Your Inner Fish: A Journey Into the 3.5-Billion-Year History of the Human Body (5 page)

BOOK: Your Inner Fish: A Journey Into the 3.5-Billion-Year History of the Human Body
12.87Mb size Format: txt, pdf, ePub

GETTING A GRIP

I
mages of the medical school anatomy lab are impossible to forget. Imagine walking into a room where you will spend several months taking a human body apart layer by layer, organ by organ, all as a way to learn tens of thousands of new names and body structures.

In the months before I did my first human dissection, I readied myself by trying to envision what I would see, how I would react, and what I would feel. It turned out that my imagined world in no way prepared me for the experience. The moment when we removed the sheet and saw the body for the first time wasn’t nearly as stressful as I’d expected. We were to dissect the chest, so we exposed it while leaving the head, arms, and legs wrapped in preservative-drenched gauze. The tissues did not look very human. Having been treated with a number of preservatives, the body didn’t bleed when cut, and the skin and internal organs had the consistency of rubber. I began to think that the cadaver looked more like a doll than a human. A few weeks went by as we exposed the organs of the chest and abdomen. I came to think that I was quite the pro; having already seen most of the internal organs, I had developed a cocky self-confidence about the whole experience. I did my initial dissections, made my cuts, and learned the anatomy of most of the major organs. It was all very mechanical, detached, and scientific.

This comfortable illusion was rudely shattered when I uncovered the hand. As I unwrapped the gauze from the fingers—as I saw the joints, fingertips, and fingernails for the first time—I uncovered emotions that had been concealed during the previous few weeks. This was no doll or mannequin; this had once been a living person, who used that hand to carry and caress. Suddenly, this mechanical exercise, dissection, became deeply and emotionally personal. Until that moment, I was blind to my connection to the cadaver. I had already exposed the stomach, the gallbladder, and other organs; but what sane person forms a human connection at the sight of a gallbladder?

What is it about a hand that seems quintessentially human? The answer must, at some level, be that the hand is a visible connection between us; it is a signature for who we are and what we can attain. Our ability to grasp, to build, and to make our thoughts real lies inside this complex of bones, nerves, and vessels.

The immediate thing that strikes you when you see the inside of the hand is its compactness. The ball of your thumb, the thenar eminence, contains four different muscles. Twiddle your thumb and tilt your hand: ten different muscles and at least six different bones work in unison. Inside the wrist are at least eight small bones that move against one another. Bend your wrist, and you are using a number of muscles that begin in your forearm, extending into tendons as they travel down your arm to end at your hand. Even the simplest motion involves a complex interplay among many parts packed in a small space.

The relationship between complexity and humanity within our hands has long fascinated scientists. In 1822, the eminent Scottish surgeon Sir Charles Bell wrote the classic book on the anatomy of hands. The title says it all:
The Hand, Its Mechanism and Vital Endowments as Evincing Design.
To Bell, the structure of the hand was “perfect” because it was complex and ideally arranged for the way we live. In his eye, this designed perfection could only have a divine origin.

The great anatomist Sir Richard Owen was one of the scientific leaders in this search for divine order within bodies. He was fortunate to be an anatomist in the mid-1800s, when there were still entirely new kinds of animals to discover living in the distant reaches of the earth. As more and more parts of the world were explored by westerners, all sorts of exotic creatures made their way back to laboratories and museums. Owen described the first gorilla, brought back from expeditions to central Africa. He coined the name “dinosaur” for a new kind of fossil creature discovered in rocks in England. His study of these bizarre new creatures gave him special insights: he began to see important patterns in the seeming chaos of life’s diversity.

Owen discovered that our arms and legs, our hands and feet, fit into a larger scheme. He saw what anatomists before him had long known, that there is a pattern to the skeleton of a human arm: one bone in the upper arm, two bones in the forearm, a bunch of nine little bones at the wrists, then a series of five rods that make the fingers. The pattern of bones in the human leg is much the same: one bone, two bones, lotsa blobs, and five toes. In comparing this pattern with the diversity of skeletons in the world, Owen made a remarkable discovery.

Owen’s genius was not that he focused on what made the various skeletons different. What he found, and later promoted in a series of lectures and volumes, were
exceptional similarities
among creatures as different as frogs and people. All creatures with limbs, whether those limbs are wings, flippers, or hands, have a common design. One bone, the humerus in the arm or the femur in the leg, articulates with two bones, which attach to a series of small blobs, which connect with the fingers or toes. This pattern underlies the architecture of all limbs. Want to make a bat wing? Make the fingers really long. Make a horse? Elongate the middle fingers and toes and reduce and lose the outer ones. How about a frog leg? Elongate the bones of the leg and fuse several of them together. The differences between creatures lie in differences in the shapes and sizes of the bones and the numbers of blobs, fingers, and toes. Despite radical changes in what limbs do and what they look like, this underlying blueprint is always present.

 

The common plan for all limbs: one bone, followed by two bones, then little blobs, then fingers or toes.

 

For Owen, seeing a design in the limbs was only the beginning: when he looked at skulls and backbones, indeed when he considered the entire architecture of the body, he found the same thing. There is a fundamental design in the skeleton of all animals. Frogs, bats, humans, and lizards are all just variations on a theme. That theme, to Owen, was the plan of the Creator.

Shortly after Owen announced this observation in his classic monograph
On the Nature of Limbs,
Charles Darwin supplied an elegant explanation for it. The reason the wing of a bat and the arm of a human share a common skeletal pattern is because they shared a common ancestor. The same reasoning applies to human arms and bird wings, human legs and frog legs—everything that has limbs. There is a major difference between Owen’s theory and that of Darwin: Darwin’s theory allows us to make very precise predictions. Following Darwin, we would expect to find that Owen’s blueprint has a history that will be revealed in creatures with no limbs at all. Where, then, do we look for the history of the limb pattern? We look to fish and their fin skeletons.

SEEING THE FISH

 

In Owen and Darwin’s day, the gulf between fins and limbs seemed impossibly wide. Fish fins don’t have any obvious similarities to limbs. On the outside, most fish fins are largely made up of fin webbing. Our limbs have nothing like this, nor do the limbs of any other creature alive today. The comparisons do not get any easier when you remove the fin webbing to see the skeleton inside. In most fish, there is nothing that can be compared to Owen’s one bone–two bones–lotsa blobs–digits pattern. All limbs have a single long bone at their base: the humerus in the upper arm and the femur in the upper leg. In fish, the whole skeleton looks utterly different. The base of a typical fin has four or more bones inside.

In the mid-1800s, anatomists began to learn of mysterious living fish from the southern continents. One of the first was discovered by German anatomists working in South America. It looked like a normal fish, with fins and scales, but behind its throat were large vascular sacs: lungs. Yet the creature had scales and fins. So confused were the discoverers that they named the creature
Lepidosiren paradoxa,
“paradoxically scaled amphibian.” Other fish with lungs, aptly named lungfish, were soon found in Africa and Australia. African explorers brought one to Owen. Scientists such as Thomas Huxley and the anatomist Carl Gegenbaur found lungfish to be essentially a cross between an amphibian and a fish. Locals found them delicious.

A seemingly trivial pattern in the fins of these fish had a profound impact on science. The fins of lungfish have at their base a single bone that attaches to the shoulder. To anatomists, the comparison was obvious. Our upper arm has a single bone, and that single bone, the humerus, attaches to our shoulder. In the lungfish, we have a fish with a humerus. And, curiously, it is not just any fish; it is a fish that also has lungs. Coincidence?

As a handful of these living species became known in the 1800s, clues started to come from another source. As you might guess, these insights came from ancient fish.

One of the first of these fossils came from the shores of the Gaspé Peninsula in Quebec, in rocks about 380 million years old. The fish was given a tongue-twister name,
Eusthenopteron. Eusthenopteron
had a surprising mix of features seen in amphibians and fish. Of Owen’s one bone–two bones–lotsa blobs–digits plan of limbs,
Eusthenopteron
had the one bone–two bones part, but in a fin. Some fish, then, had structures like those in a limb. Owen’s archetype was not a divine and eternal part of all life. It had a history, and that history was to be found in Devonian age rocks, rocks that are between 390 million and 360 million years old. This profound insight defined a whole new research program with a whole new research agenda: somewhere in the Devonian rocks we should find the origin of fingers and toes.

In the 1920s, the rocks provided more surprises. A young Swedish paleontologist, Gunnar Save-Soderbergh, was given the extraordinary opportunity to explore the east coast of Greenland for fossils. The region was terra incognita, but Save-Soderbergh recognized that it featured enormous deposits of Devonian rocks. He was one of the exceptional field paleontologists of all time, who throughout his short career uncovered remarkable fossils with both a bold exploring spirit and a precise attention to detail. (Unfortunately, he was to die tragically of tuberculosis at a young age, soon after the stunning success of his field expeditions.) In expeditions between 1929 and 1934, Save-Soderbergh’s team discovered what, at the time, was labeled a major missing link. Newspapers around the world trumpeted his discovery; editorials analyzed its importance; cartoons lampooned it. The fossils in question were true mosaics: they had fish-like heads and tails, yet they also had fully formed limbs (with fingers and toes), and vertebrae that were extraordinarily amphibian-like. After Save-Soderbergh died, the fossils were described by his colleague Erik Jarvik, who named one of the new species
Ichthyostega soderberghi
in honor of his friend.

 

Other books

William W. Johnstone by Massacre Mountain
Butter Off Dead by Leslie Budewitz
Eternity's Wheel by Neil Gaiman
Clive Cussler by The Adventures of Vin Fiz
Fighting for Desire by Sarah Bale