The Ghost in My Brain

Read The Ghost in My Brain Online

Authors: Clark Elliott

BOOK: The Ghost in My Brain
13.34Mb size Format: txt, pdf, ePub

VIKING

Published by the Penguin Publishing Group

Penguin Random House LLC

375 Hudson Street

New York, New York 10014

USA | Canada | UK | Ireland | Australia | New Zealand | India | South Africa | China

penguin.com

A Penguin Random House Company

First published by Viking Penguin, an imprint of Penguin Publishing Group, a division of Penguin Random House LLC, 2015

Copyright © 2015 by Clark Elliott

Penguin supports copyright. Copyright fuels creativity, encourages diverse voices, promotes free speech, and creates a vibrant culture. Thank you for buying an authorized edition of this book and for complying with copyright laws by not reproducing, scanning, or distributing any part of it in any form without permission. You are supporting writers and allowing Penguin to continue to publish books for every reader.

Figures and drawings by Donalee Markus

ISBN 978-0-698-15014-0

Version_1

To the millions who suffer head injuries each year. There is hope.

CONTENTS

Title Page

Copyright

Dedication

Foreword by
Donalee Markus, Ph.D.

Foreword by
Deborah Zelinsky, O.D., F.N.O.R.A., F.C.O.V.D.

Author's Note

PART ONE

CONCUSSION

Midnight

The Size of the Problem: The Magnificence of the Human Brain

Through the Kaleidoscope

The Crash

Something is Wrong

Do You Know Your Name?

Word Maps Gone Awry

Why Are You Here?

Apple, Scarf, Tree

PART TWO

THE COMPONENTS OF COGNITION

Background

The Human Machine is Broken

Balance in the Symbolic World

Visual/Spatial Patterns, Shapes, Relationships

Time Is a Metaphor

The Building Blocks of Cognition and the Metacognitive Voice

At Least We Can Laugh—Pain and Humor

Processing the Audio Signal

Social Challenges

Physical Changes

Spiraling Downward

PART THREE

THE GHOST RETURNS

Meet Dr. Dots!

Brain Glasses

The Ghost

PART FOUR

THE SCIENCE OF BRAIN PLASTICITY

Donalee Markus and Her Designs for Strong Minds

Deborah Zelinsky and the Mind-Eye Connection

EPILOGUE

Appendix: Dots Puzzles

Acknowledgments

Index

FOREWORD

BY DONALEE MARKUS, PH.D.

Clark Elliott was a mystery to me when we first met. Observing him through my glass front door, I saw that it took him two minutes just to find the doorknob with his hand. When I gave him the simplest of my assessment tests—copying a geometric line drawing—his body went into bizarre contortions as he struggled to complete it. It hurt me to watch this brilliant man put so much effort into such a trivial task. In my decades-long practice in clinically applied neuroscience (CAN), this case was striking. During the two-hour evaluation session, I kept asking myself, “What could have happened in the car accident eight years ago that all of these top medical doctors have missed?” In thinking over my plan for rewiring his brain, I realized that most of Clark's cognitive and motor behaviors were likely tied to stress on his visual systems, and I wanted him to work in parallel with my highly esteemed colleague the optometrist Deborah Zelinsky, whom he went to see the following week.

Clark was an ideal client. He understood the complexity of the brain and the relationship between sensory input and behavior. And he was compliant, faithfully completing the rigorous cognitive exercises that I created for him—the brain puzzles he was to solve on a daily basis. Most important, he carefully documented his behavioral changes so that I could move him quickly through the exercises that would allow him to regain control of his personal and professional life.

Clark's story is remarkable. Through his scrupulously documented recovery, he gives a voice and provides hope to millions of people, referred to as the
walking wounded
, with mild to moderate traumatic brain injury. The plasticity of the human brain is both its power and its weakness. Although the life-sustaining parts of the human brain are “hardwired,” the cognitive parts (located in the neocortex) are not. The part of the brain that allows people to think, to plan, to hope, to dream, to understand language and math, and to recognize themselves and others, is highly malleable.

This plasticity allows people to change their minds and to control their behavior, but it is also this part that suffers the greatest loss from brain injury. Much to the frustration of doctors and patients alike, cellular damage is microscopic and may be diffuse throughout the brain so that conventional scanning technologies cannot detect it.

By the time high-functioning individuals with post-traumatic head injury notice that their memories are not what they used to be, or that they have difficulty thinking through a problem they could once have easily solved, massive brain damage has occurred on a microscopic level. Because their symptoms are medically unverifiable and therefore untreatable, they are usually dismissed as the walking wounded, destined to suffer the pain, frustration, and humiliation of not knowing how much longer their condition will last or how much worse it will become. The
Designs for Strong Minds
system I have developed to treat such clients who come to me is a program based on a neurocognitive model that relies on the brain's plastic, reconfigurable nature, and uses
attention, intention,
and
rehearsal
to implement learning and behavioral change.

It is important to give credit to two individuals who contributed to Clark's cognitive restructuring success. Professor Reuven Feuerstein in 1981 introduced me to the original theoretical framework and the system that are the basis of my work, where the tools are
context-free visual puzzles
organized by logical structure, and the technique is
mediation,
to change the structure of the brain. It is from Professor Feuerstein that I learned “Intelligence is plastic. . . . Cognition is modifiable at any age.” And Christine Williams of NASA provided me with the opportunity to work with our top scientists, engineers, physicists—literally our rocket scientists—from 1998 to 2005. The tools, more than three thousand paper-and-pencil instruments that I created for NASA (joined by almost ten thousand instruments for children), became the framework, the structure, and the workbooks for Clark to regain his high-level cognitive functioning skills.

Warm regards,

Donalee Markus

www.designsforstrongminds.com

FOREWORD

BY DEBORAH ZELINSKY, O.D.

After a car accident disrupted his brain function, Clark Elliott embarked on a long and difficult journey to regain mental and physical capacities. His recovery testifies to his own determination, and also to new therapeutic techniques developed by Dr. Markus and myself. At one level, Clark's story stands out because of his tenacity in pushing through successive phases of recuperation. At another, it supports the concept that visual inputs can affect brain function, which in turn can promote better coordination between brain and body systems. This theme that eyeglasses and mental activity can alter brain function, and brain function alters body function, remains at the forefront during the entire book and is very eye-opening to read.

Central eyesight, which allows us to “see” an object, is the last and slowest visual pathway to be activated during processing and yet, mistakenly, the most common way of evaluating visual function. Other pathways include peripheral eyesight that allows the brain to set a context for such objects, and many non-image-forming retinal pathways that link the external environment to internal systems that control sentience and metabolism. This last group of pathways is routed beneath conscious awareness directly from the retina to the body and affects such critical systems as balance, posture, hormones, neurotransmitters, circadian rhythms, etc. The interaction of all the non-image-forming signaling pathways modulates peripheral eyesight, and in turn the efficiency of central eyesight. Brain trauma such as that which Clark suffered often wreaks havoc on the balance of these three main visual systems.

My work in the field of neuro-optometric rehabilitation is based on the original ideas of Harry Riley Spitler and A. M. Skeffington, in the 1920s and '30s respectively. Spitler observed that specific color frequencies affected body function, and Skeffington noted that some people could see targets clearly, yet remained visually uncomfortable, often rejecting glasses and preferring to have blurry eyesight. This line of thinking that the eye has connections with both the body and the mind was advanced further by notable optometric contributors including Gerald Getman, who identified links between visual processing and motor development, and Harry Wachs, who used Piaget's concepts to link academic development in the mind with motor stimulation of the body. In the 1980s, optometrists Bruce Wolff and John Thomas used the image of an eye being one of many doorways into brain function, having entrances and exits to synchronized, multisensory processing. In the 1990s my mentor, Albert A. Sutton, taught me never to think of the eye in isolation. A decade later, Selwyn Super's fascinating book on the differences between intention, attention, and inattention helped me to solidify rehabilitative concepts. As of 2014, more than 125 European doctors are expanding their thinking to include eye/ear interactions that can be affected by glasses, based on the ideas behind my patented Z-Bell™ diagnostic system.
*

One outgrowth of these decades of clinical research has been the intentional use of therapeutic glasses to break old neurological habits, allowing new habits to develop beneath conscious awareness. Neuro-optometric rehabilitation, using customized lenses, can often help patients with different kinds of injuries recover from such lingering symptoms as difficulties with balance, motor control, seizure activity, and executive functioning. Thousands of articles on retinal circuitry—linking modern neuroscience with optometry—describe the pervasive integration of brain and body systems. At the heart of neuro-optometric rehabilitation is how such research can improve the lives of patients. Babak Kateb, M.D., another visionary, founded the World Brain Mapping Association based on the interdisciplinary concepts of translational medicine. At the association's international meeting this year, neuro-optometry will be one of the featured tracks, because contemporary retinal research has clearly demonstrated how optometry can profoundly affect brain and body functions.

Clark's amazing saga was written on the basis of his meticulous notes from the moment of his brain trauma until his remarkable recovery almost a decade later. He documents not only the intricate balance between visual/spatial processing and cognition that makes us human, but also the arduous passage from one stage of recuperation to another. As readers follow his story, it is hoped that they will gain a greater understanding of how the mind-eye connection is much more than meets the eye, and how people with many types of brain problems can be helped by carefully prescribed, nontraditional eyeglasses.

Deborah Zelinsky

www.mindeyeconnection.com

Other books

Touched by a Vampire by Beth Felker Jones
Dumping Billy by Olivia Goldsmith
Moore to Lose by Julie A. Richman
Accidental Father by Nancy Robards Thompson
Her Heart's Desire by Lisa Watson
Studs: Gay Erotic Fiction by Emanuel Xavier Richard Labonté
To the Indies by Forester, C. S.
Orthokostá by Thanassis Valtinos