Read Introducción a la ciencia II. Ciencias Biológicas Online
Authors: Isaac Asimov
En 1890, un médico militar alemán llamado Emil von Behring, que trabajaba en el laboratorio de Koch, puso a prueba otra idea. ¿Por qué correr el riesgo de inyectar el propio microbio, incluso en forma atenuada, en un ser humano? Sospechando que el agente de la enfermedad pudiera dar origen a que el organismo fabricara alguna sustancia defensiva, ¿no sería lo mismo infectar a un animal con el agente, extraer la sustancia defensiva que produjera e inyectarla en el paciente humano?
Von Behring descubrió que su idea daba resultado. La sustancia defensiva se integraba en el suero sanguíneo, y Von Behring la denominó «antitoxina». Logró producir en los animales antitoxinas contra el tétanos y la difteria. Su primera aplicación de la antitoxina diftérica a un niño que padecía dicha enfermedad obtuvo un éxito tan sensacional que se adoptó inmediatamente el tratamiento, logrando reducir en forma drástica el índice de mortandad por difteria.
Paul Ehrlich (que más tarde descubriría la «bala mágica» para la sífilis) trabajaba con Von Behring y fue él quien probablemente calculó las dosis apropiadas de antitoxina. Más adelante, separóse de Von Behring (Ehrlich era un individuo irascible, que fácilmente se enemistaba con cualquiera) y prosiguió trabajando solo, con todo detalle, en la terapéutica racional del suero. Von Behring recibió el premio Nobel de Medicina y Fisiología en 1901, el primer año que fue concedido. Ehrlich también fue galardonado con el Premio Nobel en 1908, juntamente con el biólogo ruso Meshnikov.
La inmunidad que confiere una antitoxina dura tan sólo mientras ésta permanece en la sangre. Pero el bacteriólogo francés Gaston Ramon descubrió que, tratando la toxina de la difteria o del tétanos con formaldehído o calor, podía cambiar su estructura de tal forma que la nueva sustancia (denominada «toxoide») podía inyectarse sin peligro alguno al paciente humano, en cuyo caso la antitoxina producida por el propio paciente dura más que la procedente de un animal; además, pueden inyectarse nuevas dosis del toxoide siempre que sea necesario para renovar la inmunidad. Una vez introducido el toxoide en 1925, la difteria dejó de ser una aterradora amenaza.
También se utilizaron las reacciones séricas para descubrir la presencia de la enfermedad. El ejemplo más conocido es el de la «prueba de Wasserman», introducida por el bacteriólogo alemán August von Wasserman en 1906, para descubrir la sífilis. Estaba basada en técnicas desarrolladas primeramente por un bacteriólogo belga, Jules Bordet, quien trabajaba con fracciones de suero que llegaron a ser denominadas «complemento». En 1919, Bordet recibió por su trabajo el premio Nobel de Medicina y Fisiología.
La lucha laboriosa de Pasteur con el virus de la rabia demostró la dificultad de tratar con los virus. Las bacterias pueden cultivarse, manipularse y atenuarse por medios artificiales en el tubo de ensayos. Esto no es posible con el virus; sólo pueden cultivarse sobre tejido vivo. En el caso de la viruela, los anfitriones vivos para la materia experimental (el virus de la vacuna) fueron las vacas y las lecheras. En el caso de la rabia, Pasteur recurrió a conejos. Pero, en el mejor de los casos, los animales vivos constituyen un medio difícil, caro y exigen gran pérdida de tiempo como medio para cultivar microorganismos.
En el primer cuarto de este siglo, el biólogo francés, Alexis Carrel, obtuvo considerable fama con un hecho que demostró poseer inmenso valor para la investigación médica … la conservación en tubos de ensayo de trocitos de tejidos vivos. Carrel llegó a interesarse por este tipo de investigación a través de su trabajo como cirujano. Desarrolló nuevos métodos de trasplante de vasos sanguíneos y órganos de animales, por cuyos trabajos recibió, en 1912, el premio Nobel de Medicina y Fisiología. Naturalmente, tenía que mantener vivo el órgano extraído mientras se preparaba a trasplantarlo. Desarrolló un sistema para alimentarlo que consistía en bañar el tejido con sangre y suministrar los diversos extractos e iones. Como contribución incidental, Carrel desarrolló, con la ayuda de Charles Augustus Lindbergh, un «corazón mecánico» rudimentario para bombear la sangre a través del tejido. Fue la vanguardia de los «corazones», «pulmones» y «riñones» artificiales cuyo uso se ha hecho habitual en cirugía.
Los procedimientos de Carrel eran lo bastante buenos para mantener vivo durante treinta y cuatro años un trozo de corazón de un pollo embrionario … una vida mucho más larga que la del propio pollo. Carrel intentó incluso utilizar sus cultivos de tejidos para desarrollar virus … y en cierto modo lo logró. La única dificultad consistía en que también crecía la bacteria en los tejidos y había que adoptar unas precauciones asépticas tan extremadas con el fin de mantener los virus puros, que resultaba más fácil recurrir a animales.
No obstante, la idea del embrión de pollo parecía la más acertada, por así decirlo. Mejor que sólo un trozo de tejido sería un todo … el propio embrión de pollo. Se trata de un organismo completo, protegido por la cáscara del huevo y equipado con sus propias defensas naturales contra la bacteria. También es barato y fácil de adquirir en cantidad. Y en 1931, el patólogo Ernest W. Goodpasture y sus colaboradores de la Universidad Vanderbilt lograron trasplantar un virus dentro de un embrión del pollo. Por vez primera pudieron cultivarse virus puros casi tan fácilmente como las bacterias.
En 1937 se logró la primera conquista médica de verdadera trascendencia con el cultivo de virus en huevos fértiles. En el Instituto Rockefeller, los bacteriólogos proseguían aún la búsqueda para una mayor protección contra el virus de la fiebre amarilla. Pese a todo, era imposible erradicar totalmente al mosquito y en los trópicos los monos infectados mantenían una reserva constante y amenazadora de la enfermedad. El bacteriólogo sudafricano Max Theiler, del Instituto, se dedicó a producir un virus atenuado de la fiebre amarilla. Hizo pasar el virus a través de doscientos ratones y cien embriones de pollo hasta obtener un mutante que, causando tan sólo leves síntomas, aún así proporcionaba la inmunidad absoluta contra la fiebre amarilla. Por este logro, Theiler recibió, en 1951, el premio Nobel de Medicina y Fisiología.
Una vez en marcha, nada es superior al cultivo sobre placas de cristal, en rapidez, control de las condiciones y eficiencia. En los últimos años cuarenta, John Franklin Enders, Thomas Huckle Weller y Frederick Chapman Robbins, de la Facultad de Medicina de Harvard, volvieron al enfoque de Carrel. (Éste había muerto en 1944 y no sería testigo de su triunfo.) En esta ocasión disponían de un arma nueva y poderosa contra la bacteria contaminadora del tejido cultivado … los antibióticos. Incorporaron penicilina y estreptomicina al suministro de sangre que mantenía vivo el tejido y descubrieron que podían cultivar virus sin dificultad. Siguiendo un impulso, ensayaron con el virus de la poliomielitis. Asombrados, lo vieron florecer en aquel medio. Constituía la brecha por la que lograrían vencer a la polio, y los tres hombres recibieron, en 1954, el premio Nobel de Medicina y Fisiología.
En la actualidad puede cultivarse el virus de la poliomielitis en un tubo de ensayo en lugar de hacerla sólo en monos (que son sujetos de laboratorio caros y temperamentales). Así fue posible la experimentación a gran escala con el virus. Gracias a la técnica del cultivo de tejidos, Jonas E. Salk, de la Universidad de Pittsburgh, pudo experimentar un tratamiento químico del virus para averiguar que los virus de la polio, matados con formaldehído, pueden seguir produciendo reacciones inmunológicas en el organismo, permitiéndole desarrollar la hoy famosa vacuna Salk.
El importante índice de mortalidad alcanzado por la polio, su preferencia por los niños (hasta el punto de que ha llegado a denominársela «parálisis infantil»), el hecho de que parece tratarse de un azote moderno, sin (epidemias registradas con anterioridad a 1840 y, en particular, el interés mostrado en dicha enfermedad por su eminente víctima, Franklin D. Roosevelt, convirtió su conquista en una de las victorias más celebradas sobre una enfermedad en la historia de la Humanidad. Probablemente, ninguna comunicación médica fue acogida jamás con tanto entusiasmo como el informe, emitido en 1955 por la comisión evaluadora declarando efectiva la vacuna Salk. Desde luego, el acontecimiento merecía tal celebración, mucho más de lo que lo merecen la mayor parte de las representaciones que incitan a la gente a agolparse y tratar de llegar los primeros. Pero la ciencia no se nutre del enloquecimiento o la publicidad indiscriminada. El apresuramiento en dar satisfacción a la presión pública por la vacuna motivó que se pusieran en circulación algunas muestras defectuosas, generadoras de la polio, y el furor que siguió al entusiasmo hizo retroceder al programa de vacunación contra la enfermedad.
Sin embargo, ese retroceso fue subsanado y la vacuna Salk se consideró efectiva y, debidamente preparada, sin peligro alguno. En 1957, el microbiólogo polaco-americano Albert Bruce Sabin dio otro paso adelante. No utilizó virus muerto, que de no estarlo completamente puede resultar peligroso, sino una cadena de virus vivos incapaces de producir la enfermedad por sí misma, pero capaces de establecer la producción de anticuerpos apropiados, Esta «vacuna Sabin» puede, además, tomarse por vía oral, no requiriendo, por tanto, la inyección. La vacuna Sabin fue adquiriendo popularidad, primero en la Unión Soviética y posteriormente en los países europeos del Este; en 1960, se popularizó también su empleo en los Estados Unidos, extinguiéndose así el temor a la poliomielitis.
Pero, exactamente, ¿cómo actúa una vacuna? La respuesta a esta pregunta puede darnos algún día la clave química de la inmunidad.
Durante más de medio siglo, los biólogos han considerado como «anticuerpos» las principales defensas del organismo contra la infección. (Desde luego, también están los glóbulos blancos llamados «fagocitos» que devoran las bacterias. Esto lo descubrió, en 1883, el biólogo ruso Ilia Ilich Meshnikov, que más tarde sucedería a Pasteur como director del Instituto Pasteur de París y que en 1908 compartiera el premio Nobel de Medicina y Fisiología con Ehrlich. Pero los fagocitos no aportan ayuda alguna contra los virus y no parece que tomen parte en el proceso de inmunidad que estamos examinando.) A un virus, o, en realidad, a casi todas las sustancias extrañas que se introducen en la química del organismo, se les llama «antígenos». El anticuerpo es una sustancia fabricada por el cuerpo para luchar contra el antígeno específico. Pone a éste fuera de combate, combinándose con él. Mucho antes de que los químicos lograran dominar al anticuerpo, estaban casi seguros de que debía tratarse de proteínas. Por una parte, los antígenos más conocidos eran proteínas y era de presumir que únicamente una proteína lograría dar alcance a otra. Tan sólo una proteína podía tener la necesaria estructura sutil para aislarse y combinar con un antígeno determinado.
En los primeros años de la década de 1920, Landsteiner (el descubridor de los grupos sanguíneos) realizó una serie de experimentos que demostraron claramente que los anticuerpos eran, en realidad, en extremo específicos. Las sustancias que utilizara para generar anticuerpos no eran antígenos, sino compuestos mucho más simples, de estructura bien conocida. Eran los llamados «ácidos arsanílicos», compuestos que contenían arsénico. En combinación con una proteína simple, como, por ejemplo, la albúmina de la clara de huevo, un ácido arsanílico actuaba como antígeno; al ser inyectado en un animal, originaba un anticuerpo en el suero sanguíneo. Además, dicho anticuerpo era especifico para el ácido arsanílico; el suero sanguíneo del animal aglutinaría tan sólo la combinación arsanílico-albúmina y no únicamente la albúmina. Desde luego, en ocasiones puede hacerse reaccionar el anticuerpo nada más que con el ácido arsanílico, sin combinarlo con albúmina. Landsteiner demostró también que cambios muy pequeños en la estructura del ácido arsanílico se reflejarían en el anticuerpo. Un anticuerpo desarrollado por cierta variedad de ácido arsanílico no reaccionaría con una variedad ligeramente alterada.
Landsteiner designó con el nombre de «haptenos» (del griego «hapto», que significa enlazar, anudar) aquellos compuestos tales como los ácidos arsanílicos que, al combinarse con proteínas, pueden dar origen a los anticuerpos. Es de presumir que cada antígeno natural tenga en su molécula una región específica que actúe como un hapteno. Según esta teoría, un germen o virus capaz de servir de vacuna es aquel cuya estructura se ha modificado suficientemente para reducir su capacidad de dañar las células, pero que aún continúa teniendo intacto su grupo de haptenos, de tal forma que puede originar la formación de un anticuerpo específico.
Sería interesante conocer la naturaleza química de los haptenos naturales. Si llegara a determinarse, quizá fuera posible utilizar un hapteno, tal vez en combinación con algunas proteínas inofensivas, en calidad de vacuna que originara anticuerpos para un antígeno específico. Con ello se evitaría la necesidad de recurrir a toxinas o virus atenuados, que siempre acarrean un cierto pequeño riesgo.
Aún no se ha determinado la forma en que un antígeno hace surgir un anticuerpo. Ehrlich creía que el organismo contiene normalmente una pequeña reserva de todos los anticuerpos que pueda necesitar y que cuando un antígeno invasor reacciona con el anticuerpo apropiado, estimula al organismo a producir una reserva extra de ese anticuerpo determinado. Algunos inmunólogos aún siguen adhiriéndose a esta teoría o a su modificación, y, sin embargo, es altamente improbable que el cuerpo esté preparado con anticuerpos específicos para todos los antígenos posibles, incluyendo aquellas sustancias no naturales, como los ácidos arsanílicos.
La otra alternativa sugerida es la de que el organismo posee alguna molécula proteínica generalizada, capaz de amoldarse a cualquier antígeno. Entonces el antígeno actúa como patrón para modelar el anticuerpo específico formado por reacción a él. Pauling expuso dicha teoría en 1940. Sugirió que los anticuerpos específicos son variantes de la misma molécula básica, plegada simplemente de distintas formas. En otras palabras, se moldea el anticuerpo para que se adapte a su antígeno como un guante se adapta a la mano.
Sin embargo, en 1969, el avance del análisis de proteínas hizo posible que un equipo, bajo la dirección de Gerald Maurice Edelman, elaboras la estructura de los aminoácidos de un típico anticuerpo compuesto por más de 1.000 aminoácidos. Por su trabajo recibió una participación en el premio Noble de 1972 de Fisiología y Medicina.