Authors: Nicholas Carr
Although it may be tempting to ignore those who suggest the value of the literary mind has always been exaggerated, that would be a mistake. Their arguments are another important sign of the fundamental shift taking place in society’s attitude toward intellectual achievement. Their words also make it a lot easier for people to justify that shift—to convince themselves that surfing the Web is a suitable, even superior, substitute for deep reading and other forms of calm and attentive thought. In arguing that books are archaic and dispensable, Federman and Shirky provide the intellectual cover that allows thoughtful people to slip comfortably into the permanent state of distractedness that defines the online life.
OUR DESIRE FOR
fast-moving, kaleidoscopic diversions didn’t originate with the invention of the World Wide Web. It has been present and growing for many decades, as the pace of our work and home lives has quickened and as broadcast media like radio and television have presented us with a welter of programs, messages, and advertisements. The Internet, though it marks a radical departure from traditional media in many ways, also represents a continuation of the intellectual and social trends that emerged from people’s embrace of the electric media of the twentieth century and that have been shaping our lives and thoughts ever since. The distractions in our lives have been proliferating for a long time, but never has there been a medium that, like the Net, has been programmed to so widely scatter our attention and to do it so insistently.
David Levy, in
Scrolling Forward
, describes a meeting he attended at Xerox’s famed Palo Alto Research Center in the mid-1970s, a time when the high-tech lab’s engineers and programmers were devising many of the features we now take for granted in our personal computers. A group of prominent computer scientists had been invited to PARC to see a demonstration of a new operating system that made “multitasking” easy. Unlike traditional operating systems, which could display only one job at a time, the new system divided a screen into many “windows,” each of which could run a different program or display a different document. To illustrate the flexibility of the system, the Xerox presenter clicked from a window in which he had been composing software code to another window that displayed a newly arrived e-mail message. He quickly read and replied to the message, then hopped back to the programming window and continued coding. Some in the audience applauded the new system. They saw that it would enable people to use their computers much more efficiently. Others recoiled from it. “Why in the world would you want to be interrupted—and distracted—by e-mail while programming?” one of the attending scientists angrily demanded.
The question seems quaint today. The windows interface has become the interface for all PCs and for most other computing devices as well. On the Net, there are windows within windows within windows, not to mention long ranks of tabs primed to trigger the opening of even more windows. Multitasking has become so routine that most of us would find it intolerable if we had to go back to computers that could run only one program or open only one file at a time. And yet, even though the question may have been rendered moot, it remains as vital today as it was thirty-five years ago. It points, as Levy says, to “a conflict between two different ways of working and two different understandings of how technology should be used to support that work.” Whereas the Xerox researcher “was eager to juggle multiple threads of work simultaneously,” the skeptical questioner viewed his own work “as an exercise in solitary, singleminded concentration.”
30
In the choices we have made, consciously or not, about how we use our computers, we have rejected the intellectual tradition of solitary, single-minded concentration, the ethic that the book bestowed on us. We have cast our lot with the juggler.
I
t’s been a while since the first-person singular was heard in these pages. This seems like a good time for me, your word-processing scribe, to make a brief reappearance. I realize that I’ve dragged you through a lot of space and time over the last few chapters, and I appreciate your fortitude in sticking with me. The journey you’ve been on is the same one I took in trying to figure out what’s been going on inside my head. The deeper I dug into the science of neuroplasticity and the progress of intellectual technology, the clearer it became that the Internet’s import and influence can be judged only when viewed in the fuller context of intellectual history. As revolutionary as it may be, the Net is best understood as the latest in a long series of tools that have helped mold the human mind.
Now comes the crucial question: What can science tell us about the actual effects that Internet use is having on the way our minds work? No doubt, this question will be the subject of a great deal of research in the years ahead. Already, though, there is much we know or can surmise. The news is even more disturbing than I had suspected. Dozens of studies by psychologists, neurobiologists, educators, and Web designers point to the same conclusion: when we go online, we enter an environment that promotes cursory reading, hurried and distracted thinking, and superficial learning. It’s possible to think deeply while surfing the Net, just as it’s possible to think shallowly while reading a book, but that’s not the type of thinking the technology encourages and rewards.
One thing is very clear: if, knowing what we know today about the brain’s plasticity, you were to set out to invent a medium that would rewire our mental circuits as quickly and thoroughly as possible, you would probably end up designing something that looks and works a lot like the Internet. It’s not just that we tend to use the Net regularly, even obsessively. It’s that the Net delivers precisely the kind of sensory and cognitive stimuli—repetitive, intensive, interactive, addictive—that have been shown to result in strong and rapid alterations in brain circuits and functions. With the exception of alphabets and number systems, the Net may well be the single most powerful mind-altering technology that has ever come into general use. At the very least, it’s the most powerful that has come along since the book.
During the course of a day, most of us with access to the Web spend at least a couple of hours online—sometimes much more—and during that time, we tend to repeat the same or similar actions over and over again, usually at a high rate of speed and often in response to cues delivered through a screen or a speaker. Some of the actions are physical ones. We tap the keys on our PC keyboard. We drag a mouse and click its left and right buttons and spin its scroll wheel. We draw the tips of our fingers across a trackpad. We use our thumbs to punch out text on the real or simulated keypads of our BlackBerrys or mobile phones. We rotate our iPhones, iPods, and iPads to shift between “landscape” and “portrait” modes while manipulating the icons on their touch-sensitive screens.
As we go through these motions, the Net delivers a steady stream of inputs to our visual, somatosensory, and auditory cortices. There are the sensations that come through our hands and fingers as we click and scroll, type and touch. There are the many audio signals delivered through our ears, such as the chime that announces the arrival of a new e-mail or instant message and the various ringtones that our mobile phones use to alert us to different events. And, of course, there are the myriad visual cues that flash across our retinas as we navigate the online world: not just the ever-changing arrays of text and pictures and videos but also the hyperlinks distinguished by underlining or colored text, the cursors that change shape depending on their function, the new e-mail subject lines highlighted in bold type, the virtual buttons that call out to be clicked, the icons and other screen elements that beg to be dragged and dropped, the forms that require filling out, the pop-up ads and windows that need to be read or dismissed. The Net engages all of our senses—except, so far, those of smell and taste—and it engages them simultaneously.
The Net also provides a high-speed system for delivering responses and rewards—“positive reinforcements,” in psychological terms—which encourage the repetition of both physical and mental actions. When we click a link, we get something new to look at and evaluate. When we Google a keyword, we receive, in the blink of an eye, a list of interesting information to appraise. When we send a text or an instant message or an e-mail, we often get a reply in a matter of seconds or minutes. When we use Facebook, we attract new friends or form closer bonds with old ones. When we send a tweet through Twitter, we gain new followers. When we write a blog post, we get comments from readers or links from other bloggers. The Net’s interactivity gives us powerful new tools for finding information, expressing ourselves, and conversing with others. It also turns us into lab rats constantly pressing levers to get tiny pellets of social or intellectual nourishment.
The Net commands our attention with far greater insistency than our television or radio or morning newspaper ever did. Watch a kid texting his friends or a college student looking over the roll of new messages and requests on her Facebook page or a businessman scrolling through his e-mails on his BlackBerry—or consider yourself as you enter keywords into Google’s search box and begin following a trail of links. What you see is a mind consumed with a medium. When we’re online, we’re often oblivious to everything else going on around us. The real world recedes as we process the flood of symbols and stimuli coming through our devices.
The interactivity of the Net amplifies this effect as well. Because we’re often using our computers in a social context, to converse with friends or colleagues, to create “profiles” of ourselves, to broadcast our thoughts through blog posts or Facebook updates, our social standing is, in one way or another, always in play, always at risk. The resulting self-consciousness—even, at times, fear—magnifies the intensity of our involvement with the medium. That’s true for everyone, but it’s particularly true for the young, who tend to be compulsive in using their phones and computers for texting and instant messaging. Today’s teenagers typically send or receive a message every few minutes throughout their waking hours. As the psychotherapist Michael Hausauer notes, teens and other young adults have a “terrific interest in knowing what’s going on in the lives of their peers, coupled with a terrific anxiety about being out of the loop.”
1
If they stop sending messages, they risk becoming invisible.
Our use of the Internet involves many paradoxes, but the one that promises to have the greatest long-term influence over how we think is this one: the Net seizes our attention only to scatter it. We focus intensively on the medium itself, on the flickering screen, but we’re distracted by the medium’s rapid-fire delivery of competing messages and stimuli. Whenever and wherever we log on, the Net presents us with an incredibly seductive blur. Human beings “want more information, more impressions, and more complexity,” writes Torkel Klingberg, the Swedish neuroscientist. We tend to “seek out situations that demand concurrent performance or situations in which [we] are overwhelmed with information.”
2
If the slow progression of words across printed pages dampened our craving to be inundated by mental stimulation, the Net indulges it. It returns us to our native state of bottom-up distractedness, while presenting us with far more distractions than our ancestors ever had to contend with.
Not all distractions are bad. As most of us know from experience, if we concentrate too intensively on a tough problem, we can get stuck in a mental rut. Our thinking narrows, and we struggle vainly to come up with new ideas. But if we let the problem sit unattended for a time—if we “sleep on it”—we often return to it with a fresh perspective and a burst of creativity. Research by Ap Dijksterhuis, a Dutch psychologist who heads the Unconscious Lab at Radboud University in Nijmegen, indicates that such breaks in our attention give our unconscious mind time to grapple with a problem, bringing to bear information and cognitive processes unavailable to conscious deliberation. We usually make better decisions, his experiments reveal, if we shift our attention away from a difficult mental challenge for a time. But Dijksterhuis’s work also shows that our unconscious thought processes don’t engage with a problem until we’ve clearly and consciously defined the problem.
3
If we don’t have a particular intellectual goal in mind, Dijksterhuis writes, “unconscious thought does not occur.”
4
The constant distractedness that the Net encourages—the state of being, to borrow another phrase from Eliot’s
Four Quartets
, “distracted from distraction by distraction”—is very different from the kind of temporary, purposeful diversion of our mind that refreshes our thinking when we’re weighing a decision. The Net’s cacophony of stimuli short-circuits both conscious and unconscious thought, preventing our minds from thinking either deeply or creatively. Our brains turn into simple signal-processing units, quickly shepherding information into consciousness and then back out again.
In a 2005 interview, Michael Merzenich ruminated on the Internet’s power to cause not just modest alterations but fundamental changes in our mental makeup. Noting that “our brain is modified on a substantial scale, physically and functionally, each time we learn a new skill or develop a new ability,” he described the Net as the latest in a series of “modern cultural specializations” that “contemporary humans can spend millions of ‘practice’ events at [and that] the average human a thousand years ago had absolutely no exposure to.” He concluded that “our brains are massively remodeled by this exposure.”
5
He returned to this theme in a post on his blog in 2008, resorting to capital letters to emphasize his points. “When culture drives changes in the ways that we engage our brains, it creates DIFFERENT brains,” he wrote, noting that our minds “strengthen specific heavily-exercised processes.” While acknowledging that it’s now hard to imagine living without the Internet and online tools like the Google search engine, he stressed that “THEIR HEAVY USE HAS NEUROLOGICAL CONSEQUENCES.”
6
What we’re
not
doing when we’re online also has neurological consequences. Just as neurons that fire together wire together, neurons that don’t fire together don’t wire together. As the time we spend scanning Web pages crowds out the time we spend reading books, as the time we spend exchanging bite-sized text messages crowds out the time we spend composing sentences and paragraphs, as the time we spend hopping across links crowds out the time we devote to quiet reflection and contemplation, the circuits that support those old intellectual functions and pursuits weaken and begin to break apart. The brain recycles the disused neurons and synapses for other, more pressing work. We gain new skills and perspectives but lose old ones.
GARY SMALL, A
professor of psychiatry at UCLA and the director of its Memory and Aging Center, has been studying the physiological and neurological effects of the use of digital media, and what he’s discovered backs up Merzenich’s belief that the Net causes extensive brain changes. “The current explosion of digital technology not only is changing the way we live and communicate but is rapidly and profoundly altering our brains,” he says. The daily use of computers, smartphones, search engines, and other such tools “stimulates brain cell alteration and neurotransmitter release, gradually strengthening new neural pathways in our brains while weakening old ones.”
7
In 2008, Small and two of his colleagues carried out the first experiment that actually showed people’s brains changing in response to Internet use.
8
The researchers recruited twenty-four volunteers—a dozen experienced Web surfers and a dozen novices—and scanned their brains as they performed searches on Google. (Since a computer won’t fit inside a magnetic resonance imager, the subjects were equipped with goggles onto which were projected images of Web pages, along with a small handheld touchpad to navigate the pages.) The scans revealed that the brain activity of the experienced Googlers was much broader than that of the novices. In particular, “the computer-savvy subjects used a specific network in the left front part of the brain, known as the dorsolateral prefrontal cortex, [while] the Internet-naïve subjects showed minimal, if any, activity in this area.” As a control for the test, the researchers also had the subjects read straight text in a simulation of book reading; in this case, scans revealed no significant difference in brain activity between the two groups. Clearly, the experienced Net users’ distinctive neural pathways had developed through their Internet use.
The most remarkable part of the experiment came when the tests were repeated six days later. In the interim, the researchers had the novices spend an hour a day online, searching the Net. The new scans revealed that the area in their prefrontal cortex that had been largely dormant now showed extensive activity—just like the activity in the brains of the veteran surfers. “After just five days of practice, the exact same neural circuitry in the front part of the brain became active in the Internet-naïve subjects,” reports Small. “Five hours on the Internet, and the naïve subjects had already rewired their brains.” He goes on to ask, “If our brains are so sensitive to just an hour a day of computer exposure, what happens when we spend more time [online]?”
9
One other finding of the study sheds light on the differences between reading Web pages and reading books. The researchers found that when people search the Net they exhibit a very different pattern of brain activity than they do when they read book-like text. Book readers have a lot of activity in regions associated with language, memory, and visual processing, but they don’t display much activity in the prefrontal regions associated with decision making and problem solving. Experienced Net users, by contrast, display extensive activity across all those brain regions when they scan and search Web pages. The good news here is that Web surfing, because it engages so many brain functions, may help keep older people’s minds sharp. Searching and browsing seem to “exercise” the brain in a way similar to solving crossword puzzles, says Small.