Quantum Man: Richard Feynman's Life in Science (31 page)

Read Quantum Man: Richard Feynman's Life in Science Online

Authors: Lawrence M. Krauss

Tags: #Science / Physics

BOOK: Quantum Man: Richard Feynman's Life in Science
8.43Mb size Format: txt, pdf, ePub

   theoretical, 39–42, 66, 68–69, 73–75, 85–86, 110–11, 118–19, 141–42, 168–69, 193–97, 208, 234–38, 263–64, 283, 286, 287–305, 311–13

   unitary approaches in, 145, 178–79

   
see also
quantum mechanics

Physics Letters,
290

Physics of Star Trek, The
(Krauss), 265

pions, 205, 210, 212–13

Planck’s constant, 26–27, 63

plutonium, 84, 86

Pocono conference (1948), 144–46, 157

point particles, 100–102

Politzer, David, 306–7, 312

polyhedra, 289

polymers, 271

Popov, Victor, 304

positive energy, 102–3, 114, 174

positive probabilities, 53–54

positrons, 106–7, 110–11, 113–14, 131–40, 144–46, 197–98

potential energy, 15–16, 49–50, 257–59, 309–13

predictions, 71–72, 102–3, 118, 128–29, 138–40, 150–54, 158–59, 201–2, 246, 252–54

prime factorization, 285–86

prime numbers, 284, 285–86

“primeval atom” model, 240

Princeton University, 22–23, 30–32, 36–50, 59–65, 66, 67–68, 74, 77, 79, 81, 96, 164

“Principle of Least Action in Quantum Mechanics, The” (Feynman), 74, 97–98

probability, 41, 48, 52, 53, 54–58, 62–64, 69–70, 72, 97, 99, 116–17, 145–46, 183, 278–79, 280, 283–84

probability amplitudes, 54–58, 62–64, 69–70, 99, 116–17

probability waves, 183

processors, computer, 276–77

Progress in Theoretical Physics,
148–49

proportionality, 60–61

protons, 66, 100, 103, 104–5, 173, 178–79, 207, 291, 294–95, 297–98, 300, 302, 305, 312

pseudoscalar (
P
) interaction, 212

psychology, 14, 16, 59, 65

Putnam score, 21–22

Pythagorean theorem, 9

quanta, 28

quantized resistance, 271

quantum bits (qubits), 283–85

quantum chromodynamics (QCD), 305–9

quantum electrodynamics (QED), 97–159, 169–232

   absolute zero in, 170, 174–75, 185–86

   absorption theory in, 28–32, 38, 69, 110–20 (span), 114, 121, 126, 130–31

   altered-loop configurations in, 137–39

   amplitude weight in, 63–64

   anti-electrons in, 105–7

   APS meeting on (1948), 143–44, 157

   atomic structure in, 171–79, 181–82

   axial vector (
A
) interaction in, 212–16, 292

   beta decay in, 194, 208, 210, 213–15

   Bethe’s finite calculations on, 122–23, 125–26, 129, 139–40, 148, 154

   Bohr’s contributions to, 61–62, 100, 112, 119–20, 145–46, 173, 186–87

   Bose-Einstein condensation in, 175–76, 180, 189

   bosons in, 102, 175, 176, 182, 184

   classical electromagnetism compared with, 47, 48, 49, 52–53, 56, 58, 62, 63, 69, 71, 72–73, 100, 131, 142, 173, 224–25, 243

   collapsed systems in, 71–72

   conference on (1947), 122–23, 124, 143

   conservation in, 199–200, 204–5, 209–10, 215–16

   Dirac’s contributions to, 59–65, 97, 102, 103–7, 108, 110–12, 114–16, 118–19, 120, 121, 124, 131, 138, 157, 158, 192, 210, 211, 231

   dynamic evolution of, 23–35, 38–42, 47–75, 154–59

   Dyson’s contributions to, 148–54

   electromagnetic fields in, 48–50, 52–53, 197–98, 245–46

   electron activity in, 24–25, 54–58, 97, 100–107, 111, 113–14, 126, 127, 128–40,
137,
143–44, 154–56, 157, 173–74, 181–82, 186–88, 190, 197–98, 208–10, 212–13

   electron-positron (particle-antiparticle) pairs in, 113–14, 133–40,
137,
197–98

   energy states in, 49–50, 102–6, 113, 125, 126, 151, 170–74, 177, 181–88, 189

   experimental data on, 69, 70–73, 106–7, 118–30, 138–39, 148–59, 169, 173, 180–81, 185–86, 207–17, 222–23

   “Feynman rules” in, 153, 304

   Feynman’s contributions to, 58, 59–65, 66, 68–75, 86, 97–107, 108, 113, 115–18, 120, 121–22, 124–59, 161, 163, 164, 169–210, 229–32, 238, 246, 288–89, 300, 304, 305

   Feynman space-time diagrams for, 107, 129–40,
132,
133,
134,
135,
137,
144–46, 148–54, 169, 173, 193

   finite calculations in, 138–40, 150–51, 158–59, 246

   formalism in approach to, 49–50, 59–65, 73, 97, 99, 117–18, 126–28, 130–46, 150–54, 158, 176, 178–79, 185, 196, 210–12, 214–16, 219, 256–57, 299–300, 309–10

   free particles in, 176–78

   frequency shifts in, 119–23, 124, 126

   gaseous states in, 170–76

   Gell-Mann’s contributions to, 195–208, 212, 214–17, 218, 288–89

   ground state configuration in, 183–84, 185, 186, 189

   Hamiltonian approach to, 158

   Heisenberg’s contributions to, 26–30, 65, 105–6, 111, 112, 115–16, 133, 182

   helium properties in, 101, 170–76, 178, 180, 182, 184, 186, 189–90, 288, 294–95

   hydrogen properties in, 81, 84–85, 119–23, 126, 174, 201–2

   infinite higher-order corrections in, 118, 121–22, 124–29, 131, 139–40, 150–51, 154, 158–59, 197, 231, 302

   “integrating out” process in, 73–74, 110, 127–28

   interference patterns in, 25–26, 54–55, 71, 174, 175

   irrationality of, 51–58

   irrotational states in, 186–87, 289

   kinetic vs. potential energy in, 49–50

   K-mesons (Kaons) in, 205–6, 207, 210

   Kosterlitz-Thouless transition in, 191–92

   K-zero particles in, 201–2

   Lagrangian formalism in, 59–65, 97, 117–18, 157

   Lamb shift in, 119–23, 124, 125, 128, 129, 139, 140, 148

   Landau’s contributions to, 181–82, 184, 187–88, 190

   least action principle in, 14–17, 49–50, 56–57, 62, 69, 73–75, 97–98, 126–27

   least time principle in, 11–14, 18, 57–58

   lowest-order predictions in, 128–29, 150–54, 246

   for low temperature states, 170–74, 181–85, 187–88

   macro-vs. microscopic levels of, 40–41, 71, 171–79, 180, 181–82

   magnetic field lines in, 190–91

   magnetic moment of electrons in, 128–29, 143–44

   mass-energy conversion in, 102, 103–6, 113, 125, 126, 151, 177

   mathematical analysis of, 48, 49, 69, 74–75, 86, 112, 122–23, 125–26, 129–30, 131, 138–40, 145, 148–59, 169, 185–86, 188, 199–200, 211–12, 246

   measurement theory in, 70–73

   mesons in, 154–55, 169, 178, 193, 200, 205–6, 207, 210

   negative energy in, 102–3

   neutrinos in, 154–56, 194, 210–11, 213, 214–16, 219–20, 222–23

   neutron-electron interactions in, 154–56

   neutrons in, 86, 100, 154–56, 194, 201, 210, 213

   Noether’s theorem for, 199–200, 204

   nonrelativistic approach to, 122–23, 125–26

   nucleons in, 178–79

   observer problem in, 71–73

   odd vs. even (left-right or weak-strong) parities in, 204–5, 206, 207–8, 210–17

   orbital angular momentum in, 186–88, 190

   parity flips in, 212

   particle decay in, 104–5, 193–94, 200–201, 205–6, 207, 208, 210, 211–15

   particle paths in, 48–50, 52–58, 65, 69–70, 73–74, 97, 99, 100–104, 107, 117–18, 126–28, 145–46, 153, 154, 176, 178–79, 185, 193–94, 210–12, 256–57, 309–10

   path-integral formalism in, 73, 210–12, 309–10

   Pauli exclusion principle in, 100–101, 145–46

   phase transitions in, 116–17, 190–92

   phenomenological model for, 180–82

   photons in, 28–32, 114, 130–31, 134,
137,
201–2, 246, 301

   pions in, 205, 210, 212–13

   point particles in, 100–102

   polarities in, 128–29, 143–44, 203–4, 207–8, 212

   positrons in (anti-particles), 106–7, 110–11, 113–14, 131–32, 144–46

   predictions of reality based on, 71–72, 102–3, 118, 128–29, 138–40, 150–54, 158–59, 201–2, 246

   probabilities in, 48, 52, 53, 54–58, 62–64, 69–70, 97, 99, 116–17, 145–46, 183

   probability amplitudes in, 54–58, 62–64, 69–70, 99, 116–17

   proportionality in, 60–61

   protons in, 66, 100, 103, 104–5, 173, 178–79, 207

   pseudoscalar (
P
) interaction in, 212

   quantum coherence in, 180, 285

   quantum number in, 200–201

   quantum state in, 65, 100–104, 183–84, 186–87, 188

   quantum theory compared with, 180, 200–201, 243, 246–47, 249, 280, 285, 288–89, 300, 301, 302–3, 312

   relativity theory and, 69, 97, 99–100, 102, 110–12, 114, 117, 118, 119, 122–23, 125–26, 130, 131, 148, 159, 246–47, 249

   renormalization in, 125, 138–39, 150–51, 197–98, 231

   rest mass in, 125, 126, 151

   scalar (
S
) interaction in, 212, 213, 215

   Schrödinger equation for, 19, 51–52, 63, 65, 69, 97, 119–20, 121, 158, 161, 173, 188

   Schwinger’s contributions to, 122, 123, 125, 128–29, 141–45, 149, 152, 158–59, 229–30, 231, 304

   “sea of negative-energy” electrons (“Dirac sea”) in, 104–7, 114, 126, 127, 131, 157

   self-energy in, 23–24, 30, 41–42, 111–12, 115–23, 124, 136–39,
137,
150–51, 159

   speed of light in, 133

   spin as factor in, 24–25, 100–102, 116, 120–21, 128–29, 174–75, 186–88, 190, 209, 210–11

   strong vs. weak interactions in, 194, 201, 204–17, 219, 222–23

   “sum over paths” approach in, 65, 73–74, 97, 99, 117–18, 126–28, 145–46, 153, 176, 178–79, 185, 256–57

   superconductivity in, 170–72, 179, 188–89, 190, 271

   superfluidity in, 171–92

   symmetries in, 198–200, 202–11, 215–16, 302–3

   system states in, 48

   tensor (
T
) interaction in, 212, 213, 215

   test wave functions in, 188–89

   theory of, xii, 23–35, 38–42, 47–75, 154–59

   time direction in, xii, 34–35, 38–42, 47–48, 107, 129–40, 144–46, 148–54, 169, 173, 193

   Tomonaga’s contributions to, 148–49, 152, 229–30, 231, 304

   two-component neutrino formalism in, 215–16

   two-dimensional systems in, 192

   “two fluid” model in, 185–86

   
V-A
(vector-axial vector interaction in, 212–16, 292

   vacuum polarization in, 113–15, 136–40,
137,
150–51, 156–57, 159

   variational method for, 188–89

   vector (
V
) interaction in, 212–16, 292

   vortex lines in, 187–88, 189–90

   wave functions in, 52–56, 70, 117–20, 173, 182–84, 185, 188–89

   Wheeler’s contributions to, 48–50

   zero-order predictions in, 102–3, 118

quantum mechanics, 23–35, 51–75, 238–313

   algorithms for, 273, 278–79, 283, 284, 286

   antimatter in, xii, 41

   asymptomatic freedom in, 306–7, 309, 312, 319

   attractive vs. repulsive forces in, 259–60

   black holes in, 249–51, 252

   bosons in, 102, 175, 176, 182, 184, 303–5

   branes (higher dimensional objects) in, 253–54

   classical physics and, 238, 239, 243, 245–46, 265, 278–81, 282

   computer analysis of, 308–9

   computers based on, 273–86

   consistency of, 251–52

   cosmological interpretation of, 255–61

   decouplets in, 290

   deep inelastic scattering in, 298–99

   dimensions of universe in, 251–54

   eightfold way in, 289–91

   Einstein’s contributions to, 6–7, 19, 22, 27, 39–42, 60, 93, 95, 97, 102, 175, 238, 239–40, 248, 251, 280–81

   electron-proton collisions in, 297–98

   electrons in, 294, 297–98, 301

   electroweak unification in, 304–6, 312

   energy dissipation in, 247–48 281–282, 295–300, 310

   energy v. matter in, 238–39, 250–51, 257–60, 306–7, 309–13

   event horizons in, 249–50

   in expanding universe, 239–40, 257–60

   experimental results in, 240, 252–54, 257, 260–61, 290–300, 304–9, 310, 312–13

   Faddev-Popov ghost bosons in, 304

   Feynman’s contributions to, 18, 19–20, 243–62, 273–86, 288, 289, 300, 304–5, 306, 307–13, 319

   Feynman space-time diagrams for, 252–53

   Feynman test for, 309–13

   field theory and, 238–39, 247, 252–53, 261–62, 287–88, 311–13

   finite theory (effective theory) in, 310–12

   flat space in, 258–60

   formalism in approach to, 299–300

   gauge bosons in, 303–5

   gauge invariance in, 301–5

   Gell-Mann’s contributions to, 243–44, 256–57, 287–305, 312

   geometry of, 244–45, 255–56, 258–59

   Glashow-Weinberg theory of, 304–5, 310

   gravitational contraction in, 83, 238–62, 288–89, 303–4

   gravitational potential energy in, 257–59, 309–13

   gravitational waves (gravitons) in, 247–49, 250, 257–61

   group theory used in, 288–90, 292–94, 302–3

   hadrons in, 294–96, 297, 305

   Hawking Radiation in, 249–50

   Hawking’s contributions to, 249–50, 256

   inclusive processes in, 295–96

   infinities problem in, 240–41, 242, 245–46, 251, 283–84, 302, 310–12

   inflationary expansion in, 259–60

   laws of, 252, 255–57, 270–72, 278–81, 282

   lowest-order approximations in, 245–46

   machines created with, 265–66, 270–86

   mass in, 238–41, 246–47, 249, 250–51, 257–60, 301, 304, 306–7, 309–13

   massless particles in, 269, 301, 304

   mathematical analysis of, 239–40, 242, 249, 251–53, 257, 260, 280, 288–89, 292–93, 301–2, 306–9, 311

   neutrinos in, 298–99

   non-observation phenomenon in, 308–9

   nuclear democracy in, 291–92, 305–6

   observational problems in, 71–73, 249–51, 256, 281, 290–91, 308–9

   particles in, 246–47, 250, 257–61, 269, 283–84, 287–301, 304, 305

   partons in, 295–96, 298, 299–300

   path-integral formalism of, 255–57, 283–84, 309–10

   phenomenological approach to, 294–95

   photons in, 246–47, 249, 260, 269, 301–2, 303

   predictions of reality based on, 252–54

   probabilities in, 278–79, 280, 283–84

Other books

On the Hook by Cindy Davis
Playing With Fire by Deborah Fletcher Mello
Stealth Moves by Sanna Hines
Tinseltown by Taylor, Stephanie
Infinity Cage by Alex Scarrow
The Jelly People by H. Badger
Warclaw by Samantha McGivern
Firefly Mountain by Christine DePetrillo
Sliphammer by Brian Garfield