Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by the Year 2100 (58 page)

BOOK: Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by the Year 2100
12.4Mb size Format: txt, pdf, ePub
• Nations will weaken but will still exist in 2100. They will still be needed to pass laws and fix local problems. However, their power and influence will be vastly decreased as the engines of economic growth become regional, then global. For example, with the rise of capitalism in the late 1700s and early 1800s, nations were needed to enforce a common currency, language, tax laws, and regulations concerning trade and patents. Feudal laws and traditions, which hindered the advance of free trade, commerce, and finance, were quickly swept away by national governments. Normally, this process might take a century or so, but we saw an accelerated version of this when Otto von Bismarck, the Iron Chancellor, forged the modern German state in 1871. In the same way, this march toward a Type I civilization is changing the nature of capitalism, and economic power is gradually shifting from national governments to regional powers and trade blocs.
This does not necessarily mean a world government. There are many ways a planetary civilization could exist. It is clear that national governments will lose relative power, but what power will fill the vacuum will depend on many historical, cultural, and national trends that are hard to predict.
• Diseases will be controlled on a planetary basis. In the ancient past, virulent diseases were actually not so dangerous because the human population was very low. The incurable Ebola virus, for example, is probably an ancient disease that infected just a few villages over thousands of years. But the rapid expansion of civilization into previously uninhabited areas and the rise of cities mean that something like Ebola has to be monitored very carefully.
When the population of cities hit several hundred thousand to a million, diseases could spread rapidly and create genuine epidemics. The fact that the Black Plague killed perhaps half the European population was an indication, ironically, of progress, because populations had reached critical mass for epidemics and shipping routes connected ancient cities around the world.
The recent outbreak of the H1N1 flu is thus a measure of our progress as well. Perhaps originating in Mexico City, the disease spread quickly around the globe via jet travel. More important, it took only a matter of months for the nations of the world to sequence the genes of the virus and then create a vaccine for it that was available to tens of millions of people.
TERRORISM AND DICTATORSHIPS

There are groups, however, that instinctively resist the trend toward a Type I planetary civilization, because they know that it is progressive, free, scientific, prosperous, and educated. These forces may not be conscious of this fact and cannot articulate it, but they are in effect struggling against the trend toward a Type I civilization. These are:

• Islamic terrorists, who would prefer to go back a millennium, to the eleventh century, rather than live in the twenty-first century. They cannot frame their discontent in this fashion, but, judging from their own statements, they prefer to live in a theocracy where science, personal relations, and politics are all subject to strict religious edicts. (They forget that, historically, the greatness and scientific and technological prowess of the Islamic civilization were matched only by its tolerance of new ideas. These terrorists do not understand the true source of the greatness of the Islamic past.)
• Dictatorships that depend on keeping their people ignorant of the wealth and progress of the outside world. One striking example was the demonstrations that gripped Iran in 2009, where the government tried to suppress the ideas of the demonstrators, who were using Twitter and YouTube in their struggle to carry their message to the world.

In the past, people said that the pen was mightier than the sword. In the future, it will be the chip that is mightier than the sword.

One of the reasons the people of North Korea, a horribly impoverished nation, do not rebel is because they are denied all contact with the world, whose people, they believe, are also starving. In part, not realizing that they do not have to accept their fate, they endure incredible hardship.

TYPE II CIVILIZATIONS

By the time a society attains Type II status thousands of years into the future, it becomes immortal. Nothing known to science can destroy a Type II civilization. Since it will have long mastered the weather, ice ages can be avoided or altered. Meteors and comets can be also be deflected. Even if their sun goes supernova, the people will be able to flee to another star system, or perhaps prevent their star from exploding. (For example, if their sun turns into a red giant, they might be able swing asteroids around their planet in a slingshot effect in order to move their planet farther from the sun.)

One way in which a Type II civilization may be able to exploit the entire energy output of a star is to create a gigantic sphere around it that absorbs all the sunlight of the star. This is called a Dyson sphere.

A Type II civilization will probably be at peace with itself. Since space travel is so difficult, it will have remained a Type I civilization for centuries, plenty of time to iron out the divisions within their society. By the time a Type I civilization reaches Type II status, they will have colonized not just their entire solar system but also the nearby stars, perhaps out to several hundred light-years, but not much more. They will still be restricted by the speed of light.

TYPE III CIVILIZATIONS

By the time a civilization reaches Type III status, it will have explored most of the galaxy. The most convenient way to visit the hundreds of billions of planets is to send self-replicating robot probes throughout the galaxy. A von Neumann probe is a robot that has the ability to make unlimited copies of itself; it lands on a moon (since it is free of rust and erosion) and makes a factory out of lunar dirt, which creates thousands of copies of itself. Each copy rockets off to other distant star systems and makes thousands more copies. Starting with one such probe, we quickly create a sphere of trillions of these self-replicating probes expanding at near the speed of light, mapping out the entire Milky Way galaxy in just 100,000 years. Since the universe is 13.7 billion years old, there is plenty of time in which these civilizations may have risen (and fallen). (Such rapid, exponential growth is also the mechanism by which viruses spread in our body.)

There is another possibility, however. By the time a civilization has reached Type III status, its people have enough energy resources to probe the “Planck energy,” or 10
19
billion electron volts, the energy at which space-time itself become unstable. (The Planck energy is a quadrillion times larger than the energy produced by our largest atom smasher, the Large Hadron Collider outside Geneva. It is the energy at which Einstein’s theory of gravity finally breaks down. At this energy, it is theorized that the fabric of space-time will finally tear, creating tiny portals that might lead to other universes, or other points in space-time.) Harnessing such vast energy would require colossal machines on an unimaginable scale, but if successful they might make possible shortcuts through the fabric of space and time, either by compressing space or by passing through wormholes. Assuming that they can overcome a number of stubborn theoretical and practical obstacles (such as harnessing sufficient positive and negative energy and removing instabilities), it is conceivable that they might be able to colonize the entire galaxy.

This has prompted many people to speculate about why they have not visited us. Where are they? the critics ask.

One possible answer is that perhaps they already have, but we are too primitive to notice. Self-replicating von Neumann probes would be the most practical way of exploring the galaxy, and they do not have to be huge. They might be just a few inches long, because of revolutionary advances in nanotechnology. They might be in plain view, but we don’t recognize them because we are looking for the wrong thing, expecting a huge starship carrying aliens from outer space. More than likely, the probe will be fully automatic, part organic and part electronic, and will not contain any space aliens at all.

And when we do eventually meet the aliens from space, we may be surprised, because they might have long ago altered their biology using robotics, nanotechnology, and biotechnology.

Another possibility is that they have self-destructed. As we mentioned, the transition from Type 0 to Type I is the most dangerous one, since we still have all the savagery, fundamentalism, racism, and so on of the past. It is possible that one day, when we visit the stars, we may find evidence of Type 0 civilizations that failed to make the transition to Type I (for example, their atmospheres may be too hot, or too radioactive, to support life).

SETI (SEARCH FOR EXTRATERRESTRIAL INTELLIGENCE)

At the present time, the people of the world are certainly not conscious of the march toward a Type I planetary civilization. There is no collective self-awareness that this historic transition is taking place. If you take a poll, some people might be vaguely aware of the process of globalization, but beyond that there is no conscious awareness that we are headed to a specific destination.

All this might suddenly change if we find evidence of intelligent life in outer space. Then, we would immediately be aware of our technological level in relation to this alien civilization. Scientists in particular would be intensely interested in which types of technologies this alien civilization has mastered.

Although one cannot know for sure, probably within this century we will detect an advanced civilization in space, given the rapid advances in our technology.

Two trends have made this possible. First is the launching of satellites specifically designed to find small, rocky extrasolar planets, the COROT and Kepler satellites. The Kepler is expected to identify up to 600 small, earthlike planets in space. Once these planets have been identified, the next step is to focus our search for intelligent emissions from these planets.

In 2001, Microsoft billionaire Paul Allen began donating funds, now more than $30 million, to jump-start the stalled SETI program. This will vastly increase the number of radio telescopes at the Hat Creek installation, located north of San Francisco. The Allen Telescope Array, when fully operational, will have 350 radio telescopes, making it the most advanced radio telescope facility in the world. While in the past astronomers have scanned little more than 1,000 stars in their search for intelligent life, the new Allen Array will increase that number by a factor of 1,000, to a million stars.

Although scientists have been searching vainly for signals from advanced civilizations for almost fifty years, only recently have these two developments given a much-needed boost to the SETI program. Many astronomers believe that there was simply too little effort and too few resources devoted to this project. With this influx of new resources and new data, the SETI program is becoming a serious scientific project.

It is conceivable that we may, within this century, detect signals from an intelligent civilization in space. (Seth Shostak, the director of the SETI Institute in the Bay Area, told me that within twenty years, he expects to make contact with such a civilization. That may be too optimistic, but it is safe to say that within this century it would be strange if we did not detect signals from another civilization in space.)

If signals are found from an advanced civilization, it could be one of the most significant milestones in human history. Hollywood movies love to describe the chaos this event might unleash, with prophets telling us that the end is near, with crazy religious cults going into overtime,
etc.

The reality, however, is more mundane. There will be no need for immediate panic, since this civilization may not even know that we are eavesdropping on their conversations. And if they did, direct conversations between them and us would be difficult, given their enormous distance from us. First, it may take months to years to fully decode the message, and then to rank this civilization’s technology, to see if it fits the Kardashev classification. Second, direct communication with them will probably be unlikely, since the distance to this civilization will be many light-years away, too far for any direct contact. So we will be able only to observe this civilization, rather than carry on any conversation. There will be an effort to build gigantic radio transmitters that can send messages back to the aliens. But in fact, it may take centuries before any two-way communication is possible with this civilization.

NEW CLASSIFICATIONS

The Kardashev classification was introduced in the 1960s, when physicists were concerned about energy production. However, with the spectacular rise of computer power, attention turned to the information revolution, where the number of bits processed by a civilization became as relevant as its energy production.

One can imagine, for example, an alien civilization on a planet where computers are impossible because their atmosphere conducts electricity. In this case, any electrical device will soon short-circuit, creating sparks, so that only the most primitive forms of electrical appliances are possible.

Any large-scale dynamo or computer would quickly burn out. We can imagine that such a civilization might eventually master fossil fuels and nuclear energy, but their society would be unable to process large amounts of information. It would be difficult for them to create an Internet or a planetary telecommunications system, so their economy and scientific progress would be stunted. Although they would be able to rise up the Kardashev scale, it would be very slow and painful without computers.

Therefore, Carl Sagan introduced another scale, based on information processing. He devised a system in which the letters of the alphabet, from A to Z, correspond to information. A Type A civilization is one that processes only a million pieces of information, which corresponds to a civilization that has only a spoken language but not a written one. If we compile all the information that has survived from ancient Greece, which had a flourishing written language and literature, it is about a billion bits of information, making it a Type C civilization. Moving up the scale, we can then estimate the amount of information that our civilization processes. An educated guess puts us at a Type H civilization. So therefore, the energy and information processing of our civilization yields a Type .7 H civilization.

Other books

Triage: A Thriller (Shell Series) by Phillip Thomas Duck
Across The Divide by Stacey Marie Brown
Pulse - Part Two by Deborah Bladon
The Philip K. Dick Megapack by Dick, Philip K.
Wolf Asylum by Mark Fuson
Betrayed by Carol Thompson
Terratoratan by Mac Park