Out of My Later Years: The Scientist, Philosopher, and Man Portrayed Through His Own Words (13 page)

BOOK: Out of My Later Years: The Scientist, Philosopher, and Man Portrayed Through His Own Words
10.59Mb size Format: txt, pdf, ePub

I try to demonstrate how the concepts of bodily objects, space, subjective and objective time, are connected with one another and with the nature of the experience. In classical mechanics the concepts of space and time become independent. The concept of the bodily object is replaced in the foundations by the concept of the material point, by which means mechanics becomes fundamentally atomistic. Light and electricity produce insurmountable difficulties when one attempts to make mechanics the basis of all physics. We are thus led to the field theory of electricity, and, later on to the attempt to base physics entirely upon the concept of the field (after an attempted compromise with classical mechanics). This attempt leads to the theory of relativity (evolution of the notion of space and time into that of the continuum with metric structure).

I try to demonstrate, furthermore, why in my opinion the quantum theory does not seem likely to be able to produce a usable foundation for physics: one becomes involved in contradictions if one tries to consider the theoretical quantum description as a
complete
description of the individual physical system or happening.

On the other hand, up to the present time, the field theory is unable to give an explanation of the molecular structure of matter and of quantum phenomena. It is shown, however, that the conviction to the effect that the field theory is unable to give, by its methods, a solution of these problems rests upon prejudice.

1
It is in the nature of things that we are able to talk about these objects only by means of concepts of our own creation, concepts which themselves are not subject to definition. It is essential, however, that we make use only of such concepts concerning whose coordination to our experience we feel no doubt.

2
This defect of the theory could only be eliminated by such a formulation of mechanics as would command validity for all Bo. This is one of the steps which lead to the general theory of relativity. A second defect, also eliminated only by the introduction of the general theory of relativity, lies in the fact that there is no reason given by mechanics itself for the equality of the gravitational and inertial mass of the material point.

3
Because, according to a well established consequence of the relativity theory, the energy of a complete system (at rest) is equal to its inertia (as a whole). This, however, must have a well defined value.

4
The operation of measuring A, for example, thus involves a transition to a narrower ensemble of systems. The latter (hence also its ψ function) depends upon the point of view according to which this narrowing of the ensemble of systems is made.

*
“I make no hypotheses.”

14

The Fundaments of Theoretical Physics

 

SCIENCE IS THE ATTEMPT to make the chaotic diversity of our sense-experience correspond to a logically uniform system of thought. In this system single experiences must be correlated with the theoretic structure in such a way that the resulting coordination is unique and convincing.

The sense-experiences are the given subject-matter. But the theory that shall interpret them is man-made. It is the result of an extremely laborious process of adaptation: hypothetical, never completely final, always subject to question and doubt.

The scientific way of forming concepts differs from that which we use in our daily life, not basically, but merely in the more precise definition of concepts and conclusions; more painstaking and systematic choice of experimental material; and greater logical economy. By this last we mean the effort to reduce all concepts and correlations to as few as possible logically independent basic concepts and axioms.

What we call physics comprises that group of natural sciences which base their concepts on measurements; and whose concepts and propositions lend themselves to mathematical formulation. Its realm is accordingly defined as that part of the sum total of our knowledge which is capable of being expressed in mathematical terms. With the progress of science, the realm of physics has so expanded that it seems to be limited only by the limitations of the method itself.

The larger part of physical research is devoted to the development of the various branches of physics, in each of which the object is the theoretical understanding of more or less restricted fields of experience, and in each of which the laws and concepts remain as closely as possible related to experience. It is this department of science, with its ever-growing specialization, which has revolutionized practical life in the last centuries, and given birth to the possibility that man may at last be freed from the burden of physical toil.

On the other hand, from the very beginning there has always been present the attempt to find a unifying theoretical basis for all these single sciences, consisting of a minimum of concepts and fundamental relationships, from which all the concepts and relationships of the single disciplines might be derived by logical process. This is what we mean by the search for a foundation of the whole of physics. The confident belief that this ultimate goal may be reached is the chief source of the passionate devotion which has always animated the researcher. It is in this sense that the following observations are devoted to the foundations of physics.

From what has been said it is clear that the word foundations in this connection does not mean something analogous in all respects to the foundations of a building. Logically considered, of course, the various single laws of physics rest upon this foundation. But whereas a building may be seriously damaged by a heavy storm or spring flood, yet its foundations remain intact, in science the logical foundation is always in greater peril from new experiences or new knowledge than are the branch disciplines with their closer experimental contacts. In the connection of the foundation with all the single parts lies its great significance, but likewise its greatest danger in face of any new factor. When we realize this, we are led to wonder why the so-called revolutionary epochs of the science of physics have not more often and more completely changed its foundation than has actually been the case.

The first attempt to lay a uniform theoretical foundation was the work of Newton. In his system everything is reduced to the following concepts: (1) Mass points with invariable mass; (2) action at a distance between any pair of mass points; (3) law of motion for the mass point. There was not, strictly speaking, any all-embracing foundation, because an explicit law was formulated only for the actions-at-a-distance of gravitation; while for other actions-at-a-distance nothing was established
a priori
except the law of equality of
actio
and
reactio.
Moreover, Newton himself fully realized that time and space were essential elements, as physically effective factors, of his system, if only by implication.

This Newtonian basis proved eminently fruitful and was regarded as final up to the end of the nineteenth century. It not only gave results for the movements of the heavenly bodies, down to the most minute details, but also furnished a theory of the mechanics of discrete and continuous masses, a simple explanation of the principle of the conservation of energy and a complete and brilliant theory of heat. The explanation of the facts of electrodynamics within the Newtonian system was more forced; least convincing of all, from the very beginning, was the theory of light.

It is not surprising that Newton would not listen to a wave theory of light; for such a theory was most unsuited to his theoretical foundation. The assumption that space was filled with a medium consisting of material points that propagated light waves without exhibiting any other mechanical properties must have seemed to him quite artificial. The strongest empirical arguments for the wave nature of light, fixed speeds of propagation, interference, diffraction, polarization, were either unknown or else not known in any well-ordered synthesis. He was justified in sticking to his corpuscular theory of light.

During the nineteenth century the dispute was settled in favor of the wave theory. Yet no serious doubt of the mechanical foundation of physics arose, in the first place because nobody knew where to find a foundation of another sort. Only slowly, under the irresistible pressure of facts, there developed a new foundation of physics, field-physics.

From Newton’s time on, the theory of action-at-a-distance was constantly found artificial. Efforts were not lacking to explain gravitation by a kinetic theory, that is, on the basis of collision forces of hypothetical mass particles. But the attempts were superficial and bore no fruit. The strange part played by space (or the inertial system) within the mechanical foundation was also clearly recognized, and criticized with especial clarity by Ernst Mach.

The great change was brought about by Faraday, Maxwell and Hertz—as a matter of fact half-unconsciously and against their will. All three of them, throughout their lives, considered themselves adherents of the mechanical theory. Hertz had found the simplest form of the equations of the electromagnetic field, and declared that any theory leading to these equations was Maxwellian theory. Yet toward the end of his short life he wrote a paper in which he presented as the foundation of physics a mechanical theory freed from the force-concept.

For us, who took in Faraday’s ideas so to speak with our mother’s milk, it is hard to appreciate their greatness and audacity. Faraday must have grasped with unerring instinct the artificial nature of all attempts to refer electromagnetic phenomena to actions-at-a-distance between electric particles reacting on each other. How was each single iron filing among a lot scattered on a piece of paper to know of the single electric particles running round in a nearby conductor? All these electric particles together seemed to create in the surrounding space a condition which in turn produced a certain order in the filings. These spatial states, to-day called fields, if their geometrical structure and interdependent action were once rightly grasped, would, he was convinced, furnish the clue to the mysterious electromagnetic interactions. He conceived these fields as states of mechanical stress in a space-filling medium, similar to the states of stress in an elastically distended body. For at that time this was the only way one could conceive of states that were apparently continuously distributed in space. The peculiar type of mechanical interpretation of these fields remained in the background—a sort of placation of the scientific conscience in view of the mechanical tradition of Faraday’s time. With the help of these new field concepts Faraday succeeded in forming a qualitative concept of the whole complex of electromagnetic effects discovered by him and his predecessors. The precise formulation of the time-space laws of those fields was the work of Maxwell. Imagine his feelings when the differential equations he had formulated proved to him that electromagnetic fields spread in the form of polarized waves and with the speed of light! To few men in the world has such an experience been vouchsafed. At that thrilling moment he surely never guessed that the riddling nature of light, apparently so completely solved, would continue to baffle succeeding generations. Meantime, it took physicists some decades to grasp the full significance of Maxwell’s discovery, so bold was the leap that his genius forced upon the conceptions of his fellow-workers. Only after Hertz had demonstrated experimentally the existence of Maxwell’s electromagnetic waves, did resistance to the new theory break down.

But if the electromagnetic field could exist as a wave independent of the material source, then the electrostatic interaction could no longer be explained as action-at-a-distance. And what was true for electrical action could not be denied for gravitation. Everywhere Newton’s actions-at-a-distance gave way to fields spreading with finite velocity.

Of Newton’s foundation there now remained only the material mass points subject to the law of motion. But J. J. Thomson pointed out that an electrically charged body in motion must, according to Maxwell’s theory, possess a magnetic field whose energy acted precisely as does an increase of kinetic energy to the body. If, then, a part of kinetic energy consists of field energy, might that not then be true of the whole of the kinetic energy? Perhaps the basic property of matter, its inertia, could be explained within the field theory? The question led to the problem of an interpretation of matter in terms of field theory, the solution of which would furnish an explanation of the atomic structure of matter. It was soon realized that Maxwell’s theory could not accomplish such a program. Since then many scientists have zealously sought to complete the field theory by some generalization that should comprise a theory of matter; but so far such efforts have not been crowned with success. In order to construct a theory, it is not enough to have a clear conception of the goal. One must also have a formal point of view which will sufficiently restrict the unlimited variety of possibilities. So far this has not been found; accordingly the field theory has not succeeded in furnishing a foundation for the whole of physics.

For several decades most physicists clung to the conviction that a mechanical substructure would be found for Maxwell’s theory. But the unsatisfactory results of their efforts led to gradual acceptance of the new field concepts as irreducible fundamentals—in other words, physicists resigned themselves to giving up the idea of a mechanical foundation.

Thus physicists held to a field-theory program. But it could not be called a foundation, since nobody could tell whether a consistent field theory could ever explain on the one hand gravitation, on the other hand the elementary components of matter. In this state of affairs it was necessary to think of material particles as mass points subject to Newton’s laws of motion. This was the procedure of Lorentz in creating his electron theory and the theory of the electromagnetic phenomena of moving bodies.

Other books

Bethel's Meadow by Shultz, Gregory
Young Eliot by Robert Crawford
The Darwin Effect by Mark Lukens
Truth by Aleatha Romig
Quarterback Daddy by Linda Barrett