La partícula divina (14 page)

Read La partícula divina Online

Authors: Dick Teresi Leon M. Lederman

Tags: #Divulgación científica

BOOK: La partícula divina
6.75Mb size Format: txt, pdf, ePub

Los aristotélicos creían que el estado «natural» de un objeto era el de reposo. Dale un empujón a una bola por un plano y acabará por pararse, ¿no? Galileo lo sabía todo acerca de las condiciones imperfectas, y ese conocimiento le llevó a uno de los grandes descubrimientos. Leía en los planos inclinados física como Miguel Ángel veía cuerpos magníficos en los trozos de mármol. Cayó en la cuenta, sin embargo, de que, a causa de la fricción, la presión del aire y otras condiciones imperfectas, su plano inclinado no era ideal para el estudio de las fuerzas sobre objetos diversos. ¿Qué pasaría, ponderaba, si se dispusiese de un plano ideal? Como Demócrito cuando afilaba mentalmente su cuchillo, pulid mentalmente también el plano hasta que adquiera la lisura absoluta, del todo libre de fricción. Ponedlo entonces en una cámara donde se haya hecho el vacío, para libraros de la resistencia del aire. Y extended el plano hasta el infinito. Aseguraos de que está perfectamente horizontal. Ahora, en cuanto le deis un golpe insignificante a la bola, perfectamente pulida, que habéis colocado sobre vuestro plano liso a más no poder, ¿hasta dónde rodará? (Mientras todo esto permanezca en la mente, el experimento es posible y barato.) La respuesta es: rodará para siempre. Galileo razonó, pues: si un plano, incluso uno terrestre, imperfecto, se inclina, una bola a la que se empuje desde abajo hacia arriba irá más y más despacio. Si se la suelta desde arriba, irá más y más deprisa. Por lo tanto, usando el sentido intuitivo de la continuidad de la acción, concluyó que una bola que se mueva en un plano horizontal ni se frenará ni se irá haciendo más veloz, sino que seguirá igual para siempre. Galileo había dado un salto intuitivo a lo que ahora llamamos la primera ley del movimiento de Newton: un cuerpo en movimiento tiende a permanecer en movimiento. No hacen falta fuerzas para el movimiento, sino para el cambio del movimiento. En contraste con la concepción aristotélica, el estado natural de un cuerpo es el movimiento a velocidad constante. El reposo es el caso especial de velocidad nula, pero en la nueva concepción no es más natural que una u otra velocidad constante. Para cualquiera que haya conducido un automóvil o un coche de caballos, se trata de una idea contraria a la intuición: A no ser que se mantenga el pie en el pedal o se vaya azuzando al caballo, el vehículo se parará. Galileo vio que para hallar la verdad hay que atribuirle mentalmente propiedades ideales al instrumento. (O conducir el coche sobre una carretera resbaladiza de hielo.) El genio de Galileo consistió en ver de qué manera había que eliminar las causas naturales que nos ofuscan, la fricción o la resistencia del aire, para establecer un conjunto de relaciones fundamentales acerca del mundo.

Como veremos, la Partícula Divina misma es una complicación impuesta sobre un universo simple y bello, quizá para ocultar esta deslumbrante simetría a una humanidad que todavía no se merece contemplarla.

La verdad de la torre

El más famoso ejemplo de la habilidad que tenía Galileo de despojar a la simplicidad de complejidades es la historia de la torre inclinada de Pisa. Muchos expertos dudan de que este suceso fabulado haya realmente ocurrido. Stephen Hawking, por citar uno, escribe que la historia es «casi con toda certeza falsa». ¿Por qué, se pregunta Hawking, se habría molestado Galileo en dejar caer pesos de una torre sin disponer de un medio adecuado para medir los tiempos de caída cuando ya tenía su plano inclinado con el que trabajar? ¡La sombra de los griegos! Hawking, el teórico, usa aquí la Razón Pura. Eso no vale con un tipo como Galileo, experimentador de experimentadores.

Stillman Drake, el biógrafo por excelencia de Galileo, cree que la historia de la torre inclinada es cierta por una serie de razones históricas sensatas. Pero es que además concuerda con la personalidad de Galileo. El experimento de la torre no fue en realidad un experimento, sino una exhibición, un
happening
para los medios de comunicación, el primer gran número científico con fines publicitarios. Galileo se pavoneaba, y les quitaba las plumas a sus críticos.

Galileo era un individuo irascible; no agresivo, en realidad, sino de respuesta pronta y competidor fiero cuando se le retaba. Podía ser un tábano cuando se le molestaba, y le molestaba la tontería en todas sus formas. Hombre informal, ridiculizó las togas doctorales que había que vestir obligatoriamente en la Universidad de Pisa, y escribió un poema humorístico titulado «Contra la toga» que apreciaron muchísimo los profesores jóvenes y pobres, quienes a duras penas podían costearse las prendas. (A Demócrito, que ama las togas, no le gustó nada el poema.) A los profesores mayores no es que les divirtiese precisamente. Galileo escribió también ataques contra sus rivales usando varios pseudónimos. Su estilo era característico, y no engañó a mucha gente. No extraña que tuviera enemigos.

Sus peores rivales intelectuales fueron los aristotélicos, quienes creían que un cuerpo se mueve sólo si lo impulsa alguna fuerza y que un cuerpo pesado cae más deprisa que uno ligero porque experimenta una atracción mayor hacia la Tierra: Nunca se les ocurrió comprobarlo. Los profesores aristotélicos ejercían un dominio muy considerable en la Universidad de Pisa y, por lo que a esto se refiere, en la mayoría de las universidades italianas. Como os podréis imaginar, Galileo no era lo que se dice uno de sus favoritos.

El número de la torre inclinada de Pisa se dirigió a este grupo. Hawking tiene razón en que no habría sido un experimento ideal. Pero fue un acontecimiento. Y como pasa en todo acontecimiento teatral, Galileo sabía de antemano lo que iba a ocurrir. Puedo imaginármelo subiendo a la torre totalmente a oscuras a las tres de la madrugada y tirándoles un par de bolas a sus ayudantes posdoctorales. «Deberías notar que las dos bolas te dan en la cabeza a la vez», le grita a su ayudante. «Chilla si la grande te da primero.» Pero en realidad no tenía por qué hacer esto; ya había razonado que las dos bolas darían en el suelo en el mismo instante.

Su mente funcionaba así: supongamos, decía, que Aristóteles tenía razón. La bola pesada llegará al suelo antes, lo que quiere decir que se habrá acelerado hasta una velocidad mayor. Peguemos entonces la bola pesada y la ligera. Si ésta es, en efecto, más lenta, retendrá a la pesada y hará que caiga más despacio. Sin embargo, al pegarlas se ha creado un objeto más pesado, que debería caer más deprisa que cada una de las bolas por separado. ¿Cómo resolvemos este dilema? Sólo hay una solución que satisfaga todas las condiciones: ambas bolas deben caer de manera que su velocidad cambie de la misma manera. Esta es la única conclusión que evita el callejón sin salida de la menor y mayor rapidez.

Galileo, dice el cuento, se pasó buena parte de la mañana dejando caer bolas de la torre, demostrando la verdad de lo que sostenía a los observadores interesados y metiéndoles el miedo en el cuerpo a los demás. Fue lo bastante sabio para no emplear una moneda y una pluma, sino dos pesos desiguales de forma muy similar (como una bola de madera y una esfera hueca de plomo del mismo radio) para que la resistencia del aire fuese más o menos la misma. Lo demás es historia, o debería serlo. Galileo había demostrado que la caída libre era sumamente independiente de la masa (si bien no sabía por qué, y sería Einstein, en 1915, quien realmente lo entendería). Los aristotélicos recibieron una lección que nunca olvidarían; ni perdonarían.

¿Ciencia o espectáculo? Un poco ambas cosas. No sólo los experimentadores son propensos a ello. Richard Feynman, el gran teórico (pero un teórico que demostró siempre un apasionado interés por los experimentos), se presentó ante la opinión pública cuando formó parte de la comisión que investigaba el desastre del transbordador espacial
Challenger
. Como quizá recordéis, hubo una polémica acerca de la capacidad de resistir las bajas temperaturas que tenían las juntas del transbordador. Feynman zanjó la discusión con un sencillo gesto: echó un puñado de arandelas en un vaso de agua helada y dejó que el público viese cómo perdían su elasticidad. Ahora bien, ¿no os parece que Feynman, como Galileo, sabía de antemano lo que iba a pasar?

La verdad es que en los años noventa el experimento de la torre de Galileo ha resurgido con flamante intensidad. La cuestión es si hay una «quinta fuerza», una adición hipotética a la ley newtoniana de la gravitación que produciría una diferencia pequeñísima cuando se dejan caer una bola de cobre y, digamos, una de plomo. La diferencia en la duración de una caída de, por ejemplo, treinta metros sería de menos de una mil millonésima de segundo, inconcebible en los tiempos de Galileo, una dificultad meramente respetable dada la técnica actual. Por ahora, las pruebas a favor de la quinta fuerza que aparecieron a finales de los años ochenta se han esfumado por completo, pero permaneced atentos a los periódicos para manteneos al día.

Los átomos de Galileo

¿Qué pensaba Galileo de los átomos? Influido por Arquímedes, Demócrito y Lucrecio, Galileo era, intuitivamente, un atomista. Enseñó y escribió sobre la naturaleza de la materia y la luz durante muchos años, sobre todo en su libro
El ensayador
, de 1622, y en su última obra, las
Consideraciones y demostraciones matemáticas sobre dos ciencias nuevas
. Al parecer, creía que la luz estaba compuesta por corpúsculos puntuales y que la materia se construía de manera similar.

Galileo llamaba a los átomos los «cuantos menores». Se representó más tarde «un número infinito de átomos separados por un número de vacíos infinito». La concepción mecanicista está estrechamente ligada a las matemáticas de los infinitesimales, precursoras del cálculo que Newton inventaría sesenta años más tarde. Aquí hay toda una mina de paradojas. Tómese un simple cono circular —¿un capirote?— e imagínese que se corta horizontalmente, paralelamente a la base. Examinemos dos rebanadas contiguas. La parte de arriba de la pieza inferior es un círculo, el fondo de la superior otro círculo. Como antes estaban en contacto directo, punto a punto, tienen el mismo radio. Sin embargo, el cono es continuamente más pequeño, así que ¿cómo pueden ser iguales los círculos? Sin embargo, si cada círculo se compone de un número infinito de átomos y vacíos, cabe imaginar que el círculo superior contiene un número de átomos inferior, si bien aún infinito. ¿No? Recordemos que estamos en 1630 o por ahí, y que tratamos de ideas sumamente abstractas, ideas a las que les faltaban aún doscientos años para que se las sometiese a prueba experimental. (Una forma de escapar de esta paradoja es preguntar qué grueso tiene el cuchillo que corta el cono. Creo que oigo otra vez la risa floja de Demócrito.)

En las
Consideraciones y demostraciones matemáticas sobre dos ciencias nuevas
, Galileo presenta sus últimas reflexiones sobre la estructura atómica. En esta hipótesis, según historiadores recientes, los átomos se reducen a la abstracción matemática de puntos, carentes de toda dimensión, claramente indivisibles e imposibles de partir, pero desprovistos también de las formas que Demócrito había imaginado.

Ahí Galileo acercó la idea a su versión moderna, los quarks y los leptones puntuales.

Aceleradores y telescopios

Los quarks son aún más abstractos y difíciles de visualizar que los átomos. Nadie ha «visto» nunca uno, así que ¿cómo pueden existir? Nuestra prueba es indirecta. Las partículas chocan en un acelerador. Depurados dispositivos electrónicos reciben y procesan impulsos eléctricos generados por las partículas en una diversidad de sensores del detector. Un ordenador interpreta los impulsos electrónicos que salen del detector y los reduce a un montón de ceros y unos. Envía estos resultados a un monitor en nuestra sala de control. Miramos la representación de unos y ceros y decimos «¡Madre mía, un quark!». Al profano le parece tan inverosímil. ¿Cómo podemos estar tan seguros? ¿No podrían haber «fabricado» el quark el acelerador o el detector o el ordenador o el cable que va del ordenador al monitor? Al fin y al cabo, nunca hemos visto el quark con los ojos que Dios nos ha dado. ¡Oh, aquellos días en que la ciencia era más sencilla! ¿No sería extraordinario volver al siglo XVI? ¿O no? Que se lo pregunten a Galileo.

Galileo construyó, según se recoge en sus anotaciones, un número enorme de telescopios. Probó su telescopio, en sus propias palabras, «cien mil veces con cien mil estrellas y otros cuerpos». Se fiaba del artilugio. Me viene ahora a la cabeza una pequeña imagen. Ahí está Galileo con todos sus estudiantes graduados. Mira por la ventana con su telescopio, describe lo que ve y todos lo van apuntando: «Aquí hay un árbol. Tiene una rama de tal forma y una hoja de tal otra». Una vez les ha dicho qué ha visto por el telescopio, montan todos en sus caballos o carruajes —puede que un autobús— y atraviesan el campo para mirar el árbol de cerca. Lo comparan con la descripción de Galileo. Así es como se calibra un instrumento. Hay que hacer las cosas diez mil veces. Un crítico de Galileo describe la meticulosa naturaleza de la comprobación y dice: «Si sigo estos experimentos con objetos terrestres, el telescopio es soberbio. Aunque interpone algo entre el ojo y el objeto que Dios nos ha dado, me fío de él. No te engaña. Pero miras el cielo y hay una estrella; y miras por el telescopio, y hay dos. ¡Es una locura!».

De acuerdo, no fueron esas sus palabras exactas. Pero sí hubo un crítico que empleó palabras cuyo efecto era el mismo a fin de poner en entredicho la afirmación de Galileo: que Júpiter tenía cuatro lunas. El telescopio le permitía ver más de lo que puede verse a simple vista; mentía, pues. También un profesor de matemáticas despreció a Galileo; decía que también él vería cuatro lunas en Júpiter con que le diesen tiempo suficiente «para meterlas en unos cristales».

Cualquiera que use un instrumento se ve abocado a problemas como esos. ¿«Fabrica» el instrumento los resultados? Hoy los críticos de Galileo parecen tontos, pero ¿eran unos majaderos o sólo eran conservadores científicos? Un poco ambas cosas, qué duda cabe. En 1600 se creía que el ojo desempeñaba un papel activo en la visión; el globo ocular, que nos ha dado Dios, interpretaba el mundo visual para nosotros. Hoy sabemos que el ojo no es más que una lente que contiene un montón de receptores que transmiten la información a nuestra corteza visual, donde en realidad «vemos». El ojo, de hecho, es un intermediario entre el objeto y el cerebro, lo mismo que el telescopio. ¿Lleváis gafas? Pues ya estáis generando modificaciones. Las cosas llegaban al punto de que muchos cristianos devotos y filósofos de la Europa del siglo XVI casi consideraban sacrílego que se llevasen gafas, aun cuando existían ya desde hacía tres siglos. Una excepción notable fue Johannes Kepler; era muy religioso, pero no por ello dejó de llevar gafas que le ayudasen a ver; fue una suerte, pues llegó a ser el mayor astrónomo de su tiempo.

Other books

A Hustler's Son II by T. Styles
The Warrior King (Book 4) by Michael Wallace
My Almost Epic Summer by Adele Griffin
Who's Kitten Who? by Cynthia Baxter
Something for Nothing by David Anthony
Wolf in White Van by John Darnielle
Changing Places by Colette Caddle