Introducción a la ciencia I. Ciencias Físicas (48 page)

BOOK: Introducción a la ciencia I. Ciencias Físicas
12.02Mb size Format: txt, pdf, ePub

El experimento no se desarrolló tal como había imaginado Faraday. El flujo de corriente en la primera bobina no generó nada en la segunda. Pero Faraday observó que, en el momento en que conectaba la corriente, la aguja del galvanómetro se movía lentamente, y hacía lo mismo, aunque en dirección opuesta, cuando cortaba la corriente. En seguida comprendió que lo que creaba la corriente era el movimiento de las líneas magnéticas de fuerza a través del cable, y no el magnetismo propiamente dicho. Cuando una corriente empezaba a atravesar la primera bobina, se iniciaba un campo magnético que, a medida que se extendía, cruzaba la segunda bobina, en la cual producía una corriente eléctrica momentánea. A la inversa, cuando se cortaba la corriente de la batería, las líneas, a punto de extinguirse, de la fuerza magnética, quedaban suspendidas de nuevo en el cable de la segunda bobina, lo cual determinaba un flujo momentáneo de electricidad en dirección opuesta a la del primero.

De este modo, Faraday descubrió el principio de la inducción eléctrica y creó el primer «transformador». Procedió a demostrar el fenómeno de una forma más clara, para lo cual empleó un imán permanente, que introducía una y otra vez en el interior de una bobina de cable, para sacarlo luego del mismo; pese a que no existía fuente alguna de electricidad, se establecía corriente siempre que las líneas de fuerza del imán atravesaban el cable (fig. 5.4).

Fig. 5.4. Un experimento de Faraday sobre la inducción de la electricidad. Cuando el imán es movido hacia el interior de la bobina de alambre o se retira de ella, la intercepción de sus líneas de fuerza por el alambre da lugar a una corriente eléctrica en la bobina.

Los descubrimientos de Faraday condujeron directamente no sólo a la creación de la dínamo para generar electricidad, sino que también dieron base a la teoría «electromagnética» de James Clerk Maxwell, la cual agrupaba la luz y otras formas de radiación —tales como la radioeléctrica— en una sola familia de «radiaciones electromagnéticas».

El campo magnético de la Tierra

La estrecha relación entre el magnetismo y la electricidad ofrece una posible explicación al magnetismo de la Tierra. La brújula ha puesto de relieve sus líneas de fuerza magnéticas, que van desde el «polo norte magnético», localizado al norte del Canadá, hasta el «polo sur magnético», situado en el borde de la Antártida, cada uno de ellos a unos 15° de latitud de los polos geográficos. (El campo magnético de la Tierra ha sido detectado a grandes alturas por cohetes provistos de «magnetómetros».) Según la nueva teoría, el magnetismo de la Tierra puede originarse en el flujo de corrientes eléctricas situadas profundamente en su interior.

El físico Walter Maurice Elsasser ha sugerido que la rotación de la Tierra crea lentos remolinos, que giran de Oeste a Este, en el núcleo de hierro rundido. Estos remolinos generan una corriente eléctrica que, como ellos, circula de Oeste a Este. Del mismo modo que la bobina de cable de Faraday producía líneas magnéticas de fuerza en su interior, la corriente eléctrica circulante lo hace en el núcleo de la Tierra. Por tanto, crea el equivalente de un imán interno, que se extiende hacia el Norte y el Sur. A su vez, este imán es responsable del campo magnético general de la Tierra, orientado, aproximadamente, a lo largo de su eje de rotación, de modo que los polos magnéticos están situados muy cerca de los polos geográficos Norte y Sur (fig. 5.5).

Fig. 5.5. Teoría de Elsasser de la generación del campo magnético de la Tierra. Los movimientos de materias en el núcleo fundido de níquel-hierro dan lugar a corrientes eléctricas, las cuales a su vez generan líneas de fuerza magnéticas. Las líneas punteadas muestran el campo magnético de la Tierra.

El Sol posee también un campo magnético general, dos o tres veces más intenso que el de la Tierra, así como campos locales, aparentemente relacionados con las manchas solares, que son miles de veces más intensos. El estudio de estos campos —que ha sido posible gracias a que el intenso magnetismo afecta a la longitud de onda de la luz emitida— sugiere que en el interior del Sol existen corrientes circulares de cargas eléctricas.

En realidad hay hechos verdaderamente chocantes en lo que se refiere a las manchas solares, hechos a los cuales se podrá encontrar explicación cuando se conozcan las causas de los campos magnéticos a escala astronómica. Por ejemplo, el número de manchas solares en la superficie aumenta y disminuye en un ciclo de 11 años y medio. Esto lo estableció, en 1843, el astrónomo alemán Heinrich Samuel Schwabe, quien estudió la superficie del Sol casi a diario durante 17 años. Más aún, las manchas solares aparecen sólo en ciertas latitudes, las cuales varían a medida que avanza el ciclo. Las manchas muestran cierta orientación magnética, que se invierte en cada nuevo ciclo. Se desconoce aún la razón de todo ello.

Pero no es necesario examinar el Sol para hallar misterios relacionados con los campos magnéticos. Ya tenemos suficientes problemas aquí en la Tierra. Por ejemplo, ¿por qué los polos magnéticos no coinciden con los geográficos? El polo norte magnético está situado junto a la costa norte del Canadá, a unos 1.600 km del polo Norte geográfico. Del mismo modo, el polo sur magnético se halla cerca de los bordes de la Antártida, al oeste del mar de Ross, también a unos 1.600 km del polo Sur. Es más, los polos magnéticos no están exactamente opuestos el uno al otro en el Globo. Una línea que atravesase nuestro planeta para unirlos (el «eje magnético»), no pasaría a través del centro de la Tierra.

La desviación de la brújula respecto al «Norte verdadero» (o sea la dirección del polo Norte) varía de forma irregular a medida que nos movemos hacia el Este o hacia el Oeste. Así, la brújula cambió de sentido en el primer viaje de Colón, hecho que éste ocultó a su tripulación, para no causar un pánico que lo hubiese obligado a regresar.

Ésta es una de las razones por las que no resulta enteramente satisfactorio el empleo de la brújula para determinar una dirección. En 1911, el inventor americano Elmer Ambrose Sperry introdujo un método no basado en el magnetismo para indicar la dirección. Se trata de una rueda, de borde grueso, que gira a gran velocidad (el «giroscopio», que estudió por vez primera Foucault, quien había demostrado la rotación de la Tierra) y que tiende a resistir los cambios en su plano de rotación. Puede utilizarse como una «brújula giroscópica», ya que es capaz de mantener una referencia fija de dirección, lo cual permite guiar las naves o los cohetes.

Pero si la brújula magnética es imperfecta, ha prestado un gran servicio durante muchos siglos. Puede establecerse la desviación de la aguja magnética respecto al Norte geográfico. Un siglo después de Colón, en 1581, el inglés Robert Norman preparó el primer mapa que indicaba la dirección actual marcada por la brújula («declinación magnética») en diversas partes del mundo. Las líneas que unían todos los puntos del Planeta que mostraban las mismas declinaciones («líneas isogónicas») seguían una trayectoria curvilínea desde el polo norte al polo sur magnéticos.

Por desgracia, tales mapas habían de ser revisados periódicamente, ya que, incluso para un determinado lugar, la declinación magnética cambia con el tiempo. Por ejemplo, la declinación, en Londres, se desvió 32° de arco en dos siglos; era de 8° Nordeste en el año 1600, y poco a poco se trasladó, en sentido inverso a las agujas del reloj, hasta situarse, en 1800, en los 24° Noroeste. Desde entonces se ha desplazado en sentido inverso, y en 1950 era sólo de 8° Noroeste. La inclinación magnética cambia lentamente con el tiempo para cualquier lugar de la Tierra, y, en consecuencia, debe ser también constantemente revisado el mapa que muestra las líneas de la misma inclinación («líneas isoclinas»). Además, la intensidad del campo magnético de la Tierra aumenta con la latitud, y es tres veces más fuerte cerca de los polos magnéticos que en las regiones ecuatoriales. Esta intensidad se modifica asimismo de forma constante, de modo que deben someterse, a su vez, a una revisión periódica, los mapas de las «líneas isodinámicas».

Tal como ocurre con todo lo referente al campo magnético, varía la intensidad total del campo. Hace ya bastante tiempo que tal intensidad viene disminuyendo. Desde 1670, el campo ha perdido el 15 % de su potencia absoluta; si esto sigue así, alcanzará el cero alrededor del año 4000. ¿Y qué sucederá entonces? ¿Seguirá decreciendo, es decir, invirtiéndose con el polo norte magnético en la Antártida y el polo sur magnético en el Ártico? Planteándolo de otra forma: ¿Es que el campo magnético terrestre disminuye, se invierte y se intensifica, repitiendo periódicamente la misma secuencia?

Un procedimiento para averiguar si puede ser posible tal cosa es el estudio de las rocas volcánicas. Cuando la lava se enfría, los cristales se alinean de acuerdo con el campo magnético. Nada menos que hacia 1906, el físico francés Bernard Brunhes advirtió ya que algunas rocas se magnetizaban en dirección
opuesta
al campo magnético real de la Tierra. Por aquellas fechas se desestimó tal hallazgo, pero ahora nadie niega su importancia. Las rocas nos lo hacen saber claramente: el campo magnético terrestre se invierte no sólo ahora, sino que lo ha hecho ya varias veces —para ser exactos nueve—, a intervalos irregulares durante los últimos cuatro millones de años.

El hallazgo más espectacular a este respecto se efectuó en el fondo oceánico. Como quiera que la roca fundida que sale, sin duda, a través de la Hendidura del Globo, y se desparrama, si uno se mueve hacia el Este o el Oeste de tal Hendidura, pasará por rocas que se han ido solidificando progresivamente hace largo tiempo. Si estudiamos la alineación magnética, advertiremos inversiones de determinadas fajas, que van alejándose de la Hendidura a intervalos cuya duración oscila entre los 50.000 años y los 20 millones de años. Hasta ahora, la única explicación racional de semejante fenómeno consiste en suponer que
hay
un suelo marino que se desparrama incesantemente y unas inversiones del campo magnético.

Sin embargo, resulta más fácil admitir tales inversiones que averiguar sus causas.

Además de las variaciones del campo magnético a largo plazo, se producen también pequeños cambios durante el día, los cuales sugieren alguna relación con el Sol. Es más, hay «días agitados» en los que la aguja de la brújula salta con una viveza poco usual. Se dice entonces que la Tierra está sometida a una «tormenta magnética». Las tormentas magnéticas son idénticas a las eléctricas, y, en general, van acompañadas de un aumento en la intensidad de las auroras, observación ésta hecha ya en 1759 por el físico inglés John Cantón.

La aurora boreal (término introducido en 1621 por el filósofo francés Fierre Gassendi) es un maravilloso despliegue de inestables y coloreadas corrientes u ondulaciones de luz, que causan un efecto de esplendor extraterrestre. Su contrapartida en el Antártico recibe el nombre de aurora austral. Las corrientes de la aurora parecen seguir las líneas de fuerza magnética de la Tierra y concentrarse, para hacerse visibles, en los puntos en que las líneas están más juntas, es decir, en los polos magnéticos. Durante las tormentas magnéticas, la aurora boreal puede verse en puntos tan meridionales como Boston y Nueva York.

No fue difícil entender el porqué de la aurora boreal. Una vez descubierta la ionosfera se comprendió que algo —presuntamente, alguna radiación solar de cualquier tipo— comunicaba energía a los átomos en la atmósfera superior y los transformaba en iones cargados eléctricamente. Por la noche, los iones perdían su carga y su energía; esto último se hacía perceptible mediante la luz de la aurora. Era una especie de singular resplandor aéreo, que seguía las líneas magnéticas de fuerza y se concentraba cerca de los polos magnéticos, porque ése era el comportamiento que se esperaba de los iones cargados eléctricamente. (El resplandor aéreo propiamente dicho se debe a los átomos sin carga eléctrica, por lo cual no reaccionan ante el campo magnético.)

El viento solar

Pero, ¿qué decir de los días agitados y las tormentas magnéticas? Una vez más, el dedo de la sospecha apunta hacia el Sol.

La actividad de las manchas solares parece generar tormentas magnéticas. Hasta qué punto una perturbación que tiene lugar a 150 millones de kilómetros de distancia puede afectar a la Tierra, es algo que no resulta fácil de ver, pero debe ser así, puesto que tales tormentas son particularmente comunes cuando la actividad de las manchas solares es elevada.

Other books

China Blues by David Donnell
One Wicked Night by Jamieson, Kelly
Ruined by LP Lovell
In Sarah's Shadow by Karen McCombie
Prince of Thorns by Mark Lawrence
Make Believe by Cath Staincliffe
Shadow's Son by Jon Sprunk
The Death Collector by Neil White