Twistor

Read Twistor Online

Authors: Gene; John; Wolfe Cramer

BOOK: Twistor
7.53Mb size Format: txt, pdf, ePub

TWISTOR

JOHN CRAMER

Introduction to the Dover Edition by

G
ENE
W
OLFE

DOVER PUBLICATIONS, INC.

Mineola, New York

Copyright

Copyright © 1989 by John Cramer

Introduction to the Dover edition Copyright © 2016 by Gene Wolfe

All rights reserved.

Bibliographical Note

This Dover edition, first published in 2016, is an unabridged republication of the work originally published by William Morrow & Company, Inc., New York, in 1989. A new Introduction to the Dover edition by Gene Wolfe has been specially prepared for the present edition.

International Standard Book Number

ISBN-13: 978-0-486-80450-7

ISBN-10: 0-486-80450-X

Manufactured in the United States by RR Donnelley

80450X01    2016

www.doverpublications.com

For
Pauline
who wanted me to,

and David,
who knew I could

CONTENTS

Introduction

Acknowledgements

Part 1

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Part 2

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Chapter 15

Part 3

Chapter 16

Chapter 17

Chapter 18

Chapter 19

Chapter 20

Chapter 21

Chapter 22

Chapter 23

Chapter 24

Afterword

About the Author

Introduction
to the Dover Edition

When I began reading science fiction, a good many people were complaining that there wasn't enough hard science in it. Things have changed today. The pulp magazines I remember so fondly have gone the way of the dodo. There are no longer jungles on Venus. Robert A. Heinlein, the SF giant of that day, is dead. So are the ABC writers, Asimov, Bradbury, and Clarke. The excitement has faded.

One thing, however, has not changed, faded, or died. In those days, readers complained that there was too much fiction in science fiction, and not enough science. Few seem to understand the reason for that, so let me explain.

Scarcely anyone who writes science fiction is in fact a scientist. My own degree is in engineering. I have been a soldier, an engineer, and a journalist, but never a scientist. Even so, I have come closer than most.

John Cramer is one of the rare exceptions. He is a scientist, and is highly regarded in his field of experimental physics. When he writes about science or scientists, about laboratories, and about the public's reaction to all three, he knows what he's talking about.

That is much, but it is far from all. He not only knows science, but he knows science fiction, which he has read for decades. At various times, I have tried to explain to various groups of people, some of them very skeptical, that for a science fiction book to be good, it must be a
good
book. It is a simple truth, and it may be that it seems to you (as it does to me) an obvious one. A children's book cannot be a good children's book unless it is a good book, which is why a reader of fifty may read
Tom Sawyer
with pleasure. In just the same way, a crime novel like
The Maltese Falcon
must be a good novel. Otherwise, it cannot be a good crime novel. Can a good evening meal NOT be a good meal?

G
ENE
W
OLFE

ACKNOWLEDGMENTS

Once I complained to David Hartwel! that not enough hard science fiction of quality was being published these days. His response was that the fault lay with people like me, who had the scientific background and writing skills to produce good hard SF but were not doing so. That challenge stimulated me to write this novel. David Hartwell, therefore, is the progenitor of
Twistor.
His many suggestions for improvements in style and structure over many months and several drafts have made this a far better book than it might have been in the hands of a less interactive editor.

My wife, Pauline, has also played a key editorial role in this, my first venture into the writing of fiction. Her sense of style and her deftness with point-of-view relationships help me to convert flat scenes into dynamic ones, lifeless characters into interesting ones.

I am also indebted to the patient readers of various preliminary versions of the manuscript who have made useful and sometimes important suggestions: my daughters Kathryn Elizabeth Cramer and Karen Cramer Doyle, and my friends Dr. Ilan Ben Zvi, David and Jan Rowell, Dick Seymour, Judy Gustafson, and particularly Vonda McIntyre, who helped me to avoid many of the pitfalls into which the inexperienced fiction writer can stumble.

This novel is set in the Department of Physics of the University of Washington in Seattle, where I am a faculty member, and it accurately represents the structural layout of the present physics building and campus. David's laboratory is, in fact, my former lab/office in 101 Physics Hall. However, the physicist characters in the book are not based on any of my colleagues on the physics and astronomy faculties and should bear no resemblance to any particular individuals.

J. G. C.

TWISTOR

PART
1

Problems worthy of attack, prove their worth by hitting back.

Piet Hein

(1905–1996)

1

Wednesday Morning, October 6

The towers and battlements of Physics Hall shone wetly in the morning light filtering through the Seattle drizzle. The structure would have been well suited for shooting arrows and pouring boiling oil down upon some horde of barbarians, were any so foolish as to venture onto the campus of the University of Washington to besiege Physics Hall.

On its north and east sides the 1920s yellow-brown brick structure was embraced by the Suzzalo Library, a gothic pseudo-cathedral of arching marble and stained glass, straining along its angled length to contain its overburden of books as it metamorphosed into Bauhaus glass and concrete at its southeastern terminus. Physics Hall stretched north to south along Rainier Vista, a broad walkway so aligned that when the Seattle weather cooperated it looked out across a large circular pool and fountain past the cityscape of Capitol Hill to a stunning view of Mount Rainier some eighty-five miles to the southeast.

But this particular October morning the sky was overcast, and a light rain dampened the walkway. The arching water plumes of the fountain were absent, leaving only a dark circular pool that reflected the ragged downslope of Capitol Hill, its indistinct edge shading into grayness in the space where giant Rainier belonged. The giant's absence was ignored by the interweaving of bicycles and quick-stepping students on Rainier Vista.

Inside Physics Hall the activities of the morning were beginning to build as the outflow of milling and chattering
undergraduates,
their eight-thirty classes just ended, diffused from the large upstairs lecture halls to collide with the inflow of nine-thirty replacements. But behind the closed doors on the ground floor, within the long rectangular laboratory rooms, a calmer, more focused atmosphere prevailed. Here, carefully tended by faculty and the most recent generation of graduate students and postdocs, were ongoing long-term experiments that might reveal more about the inner workings of the universe, or at least provide the basis for a Ph.D. thesis or a respectable journal publication.

Behind one glass-paneled door an arcane array of hardware imprisoned a single atom of antimatter, a nucleus made of antiprotons and antineutrons and surrounded by a swarm of positrons. The anti-atom, created at a large accelerator in Geneva, had been carefully imported to Seattle riding in its own electromagnetic trap. It had been held here for over a year, while ever-changing probes extracted secrets of the symmetries between matter and antimatter. In another room a coherent beam of X-rays was meticulously mapping the arrangements of a single layer of atoms clinging to a cold graphite surface, the holographic interference patterns revealing unsuspected regularities and geometrical connections in their configurations. Behind another door a gleaming, rainbowed laser disk spun within its drive. Its data stream, beamed down from an orbiting telescope and captured in plastic, aluminium and gold, was now with systematic reconstruction yielding an emerging vista, a giant galaxy suspended in the act of a violent explosion that had occurred over a billion years ago. And in another laboratory room just down the corridor, a doorway on another universe was about to open . . .

David Harrison, in loose sweater, old jeans, and scuffed brown loafers, sat sprawled on the floor beside a rack of electronic equipment. He brushed a shock of dark brown
hair
from his eyes as he peered into the tangle of wires, ribbon cables, and fiber-optics bundles. Somewhere in this mess two signal leads had been interchanged. All he had to do was find them.

Beside him on the bare concrete floor was a large electrical drawing showing many neat square-cornered lines in a rainbow of colors. It was the latest version of the experiment's control wiring layout, and just minutes earlier it had been traced and labeled by the inhumanly adroit pens of the 'coat rack' graphics plotter in the corner. With a small digital multimeter David was beginning the tedium of verifying the correspondence between the beautifully ordered ideal world of electrical wiring represented on the paper and the untidy real world of jumbled multicolored wires, spade lugs, solder joints, and screw connectors in the equipment rack before him. He was confident that he would find the error. But he was also pretty sure that he would not find it soon.

There was a knock at the door. He rose and brushed off the seat of his jeans with his hand, then rubbed hand against jeans. His butt felt cold from sitting on the bare concrete floor. He walked across the cluttered laboratory room to the brown varnished door, noting the tall shadow on the frosted pane. He could hear the shrill sounds of high-pitched child-voices. It was Paul and the children. He felt a rush of pleasure and smiled broadly as he pulled the door open.

'David!' they said in unison as the door came open. David noticed how their voices echoed from the bare concrete floor, the white plaster walls, and the high ceiling of the room. Jeffrey Ernst, age six, and Melissa Ernst, who had just had her ninth birthday, charged across the threshold and embraced David's knees. He absorbed their small impacts and knelt to hug them.

'Hi, David!' said Paul Ernst. 'We've come for the grand tour you promised.'

'
C'mon in,' said David, rising from greeting the children. He took each child by a hand and led them down the long room.

Paul glanced around the cluttered laboratory. 'Where's Victoria?' he asked.

'I suppose she's still sleeping,' said David. 'She wrote an entry in the lab book at three A.M., SO she must have gone home after that. We're working shifts. We've really been up to our ears in problems here, but now things are finally coming together.' He looked at Paul. 'A lot of our progress is due to her. Vickie's very smart, and good with equipment, and she gets things done. I think she's the best experimentalist graduate student in the department.'

His friend nodded. 'The CalTech undergrads we get as graduate students are usually pretty good, and Victoria is better than most. She took my advanced quantum mechanics class last year,' he continued,
'
and all three quarters she got one of the highest grades in the class. She beat out some of our hotshot theory grad students. As I recall, she had one of the better scores on the qualifying exam, too.'

'
Well,' said David, 'this mess will soon be collecting her thesis data. She and I have invented a neat trick for manipulating the drive field. Vickie calls it a
'
twistor' field because of the way it twists and contorts the electric and magnetic fields. She's taking George Williams's quantum gravitation class now, and she says the time structure we impose on the field is an electromagnetic analog of one of the twistor operators in Roger Penrose's hyper-dimensional calculus.'

Paul nodded noncommittally.

David noticed that Jeff, perhaps bored with the adult conversation, was beginning to fidget. He smiled at the boy, gesturing toward the shining array of equipment that occupied most of the central part of the room. This,' he said, 'is our new experiment. We had to work some to cram it all into this little seven-by-fourteen-meter lab
room.
Some parts were scrounged from an older setup of Professor Saxon's, some were bought from commercial suppliers, and some were made in our machine and electronics shops. We spent a long time deciding exactly what we wanted, and we designed a lot of it ourselves. Now all the parts are here, it's all put together, and all we have to do is make it work.' He thought of the wiring error yet to be found and looked across at the wiring diagram spread on the floor.

Other books

Campus Tramp by Lawrence Block
The Queen's Lady by Barbara Kyle
Champagne & Chaps by Cheyenne McCray
Recasting India by Hindol Sengupta