Read The Singularity Is Near: When Humans Transcend Biology Online
Authors: Ray Kurzweil
Tags: #Non-Fiction, #Fringe Science, #Retail, #Technology, #Amazon.com
In accordance with the law of accelerating returns, paradigm shift (also called innovation) turns the S-curve of any specific paradigm into a continuing exponential. A new paradigm, such as three-dimensional circuits, takes over when the old paradigm approaches its natural limit, which has already happened at least four times in the history of computation. In such nonhuman species as apes, the mastery of a toolmaking or -using skill by each animal is characterized by an S-shaped learning curve that ends abruptly; human-created technology, in contrast, has followed an exponential pattern of growth and acceleration since its inception.
DNA Sequencing, Memory, Communications, the Internet, and
Miniaturization
Civilization advances by extending the number of important operations which we can perform without thinking about them.
—
ALFRED
N
ORTH
W
HITEHEAD, 1911
42
Things are more like they are now than they ever were before.
—
DWIGHT
D. E
ISENHOWER
The law of accelerating returns applies to all of technology, indeed to any evolutionary process. It can be charted with remarkable precision in information-based technologies because we have well-defined indexes (for example, calculations per second per dollar, or calculations per second per gram) to measure them. There are a great many examples of the exponential growth
implied by the law of accelerating returns, in areas as varied as electronics of all kinds, DNA sequencing, communications, brain scanning, brain reverse engineering, the size and scope of human knowledge, and the rapidly shrinking size of technology. The latter trend is directly related to the emergence of nanotechnology.
The future GNR (Genetics, Nanotechnology, Robotics) age (see
chapter 5
) will come about not from the exponential explosion of computation alone but rather from the interplay and myriad synergies that will result from multiple intertwined technological advances. As every point on the exponential-growth curves underlying this panoply of technologies represents an intense human drama of innovation and competition, we must consider it remarkable that these chaotic processes result in such smooth and predictable exponential trends. This is not a coincidence but is an inherent feature of evolutionary processes.
When the human-genome scan got under way in 1990 critics pointed out that given the speed with which the genome could then be scanned, it would take thousands of years to finish the project. Yet the fifteen-year project was completed slightly ahead of schedule, with a first draft in 2003.
43
The cost of DNA sequencing came down from about ten dollars per base pair in 1990 to a couple of pennies in 2004 and is rapidly continuing to fall (see the figure below).
44
There has been smooth exponential growth in the amount of DNA-sequence data that has been collected (see the figure below).
45
A dramatic recent example of this improving capacity was the sequencing of the SARS virus, which took only thirty-one days from the identification of the virus, compared to more than fifteen years for the HIV virus.
46
Of course, we expect to see exponential growth in electronic memories such as RAM. But note how the trend on this logarithmic graph (below) proceeds smoothly through different technology paradigms: vacuum tube to discrete transistor to integrated circuit.
47
Exponential growth in RAM capacity across paradigm shifts
.
However, growth in the price-performance of magnetic (disk-drive) memory is not a result of Moore’s Law. This exponential trend reflects the squeezing of data onto a magnetic substrate, rather than transistors onto an integrated circuit, a completely different technical challenge pursued by different engineers and different companies.
48
Exponential growth in communications technology (measures for communicating information; see the figure below) has for many years been even more explosive than in processing or memory measures of computation and is no less significant in its implications. Again, this progression involves far more than just shrinking transistors on an integrated circuit but includes accelerating advances in fiber optics, optical switching, electromagnetic technologies, and other factors.
49
We are currently moving away from the tangle of wires in our cities and in our daily lives through wireless communication, the power of which is doubling every ten to eleven months (see the figure below).
The figures below show the overall growth of the Internet based on the number of hosts (Web-server computers). These two charts plot the same data, but one is on a logarithmic axis and the other is linear. As has been discussed, while technology progresses exponentially, we experience it in the linear domain. From the perspective of most observers, nothing was happening in this area until the mid-1990s, when seemingly out of nowhere the World Wide Web and e-mail exploded into view. But the emergence of the Internet into a worldwide phenomenon was readily predictable by examining exponential trend data in the early 1980s from the ARPANET, predecessor to the Internet.
50
This figure shows the same data on a linear scale.
51
The explosion of the Internet appears to be a surprise from the linear chart but was perfectly predictable from the logarithmic one
.
In addition to servers, the actual data traffic on the Internet has also doubled every year.
52
To accommodate this exponential growth, the data transmission speed of the Internet backbone (as represented by the fastest announced backbone communication channels actually used for the Internet) has itself grown exponentially. Note that in the figure “Internet Backbone Bandwidth” below, we can actually see the progression of S-curves: the acceleration fostered by a new paradigm, followed by a leveling off as the paradigm runs out of steam, followed by renewed acceleration through paradigm shift.
53