Read The Blind Watchmaker Online

Authors: Richard Dawkins

Tags: #Science, #Life Sciences, #Evolution, #General

The Blind Watchmaker (32 page)

BOOK: The Blind Watchmaker
2.03Mb size Format: txt, pdf, ePub
ads

The Red Queen label is amusing, but it can be misleading if taken (as it sometimes is) to mean something mathematically precise, literally zero relative progress. Another misleading feature is that in the Alice story the Red Queen’s statement is genuinely paradoxical, irreconcilable with common sense in the real physical world. But van Valen’s evolutionary Red Queen effect is not paradoxical at all. It is entirely in accordance with common sense, so long as common sense is intelligently applied. If not paradoxical, however, arms races can give rise to situations that strike the economically minded human as wasteful.

Why, for instance, are trees in forests so tall? The short answer is that all the other trees are tall, so no one tree can afford not to be. It would be overshadowed if it did. This is essentially the truth, but it offends the economically minded human. It seems so pointless, so wasteful. When all the trees are the full height of the canopy, all are approximately equally exposed to the sun, and none could afford to be any shorter. But if only they were
all
shorter; if only there could be some sort of trade-union agreement to lower the recognized height of the canopy in forests,
all
the trees would benefit. They would be competing with each other in the canopy for exactly the same sunlight, but they would all have ‘paid’ much smaller growing costs to get into the canopy. The total economy of the forest would benefit, and so would every individual tree. Unfortunately, natural selection doesn’t care about total economies, and it has no room for cartels and agreements. There has been an arms race in which forest trees became larger as the generations went by. At every stage of the arms race there was no intrinsic benefit in being tall for its own sake. At every stage of the arms race the only point in being tall was to be relatively taller than neighbouring trees.

As the arms race wore on, the average height of trees in the forest canopy went up. But the benefit that the trees obtained from being tall did not go up. It actually deteriorated because of the enhanced costs of growing. Successive generations of trees got taller and taller, but at the end they might better, in one sense, have stayed where they started. Here, then, is the connection with Alice and the Red Queen, but you can see that in the case of the trees it is not really paradoxical. It is generally characteristic of arms races, including human ones, that although all would be better off if
none
of them escalated,, so long as one of them escalates none can afford
not
to. Once again, by the way, I should stress that I have told the story too simply. I do not mean to suggest that in every literal generation trees are taller than their counterparts in the previous generation, nor that the arms race is necessarily still going on.

Another point illustrated by the trees is that arms races do not necessarily have to be between members of different species. Individual trees are just as likely to be harmfully overshadowed by members of their own species as by members of other species. Probably more so in fact, for all organisms are more seriously threatened by competition from their own species than from others. Members of one’s own species are competitors for the same resources, to a much more detailed extent, than members of other species. There are also arms races within species between male roles and female roles, and between parent roles and offspring roles. I have discussed these in
The Selfish Gene
, and will not pursue them further here.

The tree story allows me to introduce an important general distinction between two kinds of arms race, called symmetric and asymmetric arms races. A symmetric arms race is one between competitors trying to do roughly the same thing as each other. The arms race between forest trees struggling to reach the light is an example. The different species of trees are not all making their livings in exactly the same way, but as far as the particular race we are talking about is concerned - the race for the sunlight above the canopy - they are competitors for the same resource. They are taking part in an arms race in which success on one side is felt by the other side as failure. And it is a symmetric arms race because the nature of the success and failure on the two sides is the same: attainment of sunlight and being overshadowed, respectively.

The arms race between cheetahs and gazelles, however, is asymmetric. It is a true arms race in which success on either side is felt as failure by the other side, but the nature of the success and failure on the two sides is very different. The two sides are ‘trying’ to do very different things. Cheetahs are trying to eat gazelles. Gazelles are not trying to eat cheetahs, they are trying to avoid being eaten by cheetahs. From an evolutionary point of view asymmetric arms races are more interesting, since they are more likely to generate highly complex weapons systems. We can see why this is by taking examples from human weapons technology.

I could use the USA and the USSR as examples, but there is really no need to mention specific nations. Weapons manufactured by companies in any of the advanced industrial countries may end up being bought by any of a wide variety of nations. The existence of a successful offensive weapon, such as the Exocet type of surface skimming missile, tends to ‘invite’ the invention of an effective counter, for instance a radio jamming device to ‘confuse’ the control system of the missile. The counter is more likely than not to be manufactured by an enemy country, but it could be manufactured by the same country, even by the same company! No company, after all, is better equipped to design a jamming device for a particular missile than the company that made the missile in the first place. There is nothing inherently improbable about the same company producing both and selling them to opposite sides in a war. I am cynical enough to suspect that it probably happens, and it vividly illustrates the point about
equipment
improving while its net
effectiveness
stands still (and its costs increase).

From my present point of view the question of whether the manufacturers on opposite sides of a human arms race are enemies of each other or identical with each other is irrelevant, and interestingly so. What matters is that, regardless of their manufacturers, the devices themselves are enemies of each other in the special sense I have defined in this chapter. The missile, and its specific jamming device, are enemies of each other in that success in one is synonymous with failure in the other. Whether their designers are also enemies of each other is irrelevant, although it will probably be easier to assume that they are.

So far I have discussed the example of the missile and its specific antidote without stressing the evolutionary, progressive aspect, which is, after all, the main reason for bringing it into this chapter. The point here is that not only does the present design of a missile invite, or call forth, a suitable antidote, say a radio jamming device. The antimissile device, in its turn, invites an improvement in the design of the missile, an improvement that specifically counters the antidote, an anti-antimissile device. It is almost as though each improvement in the missile stimulates the next improvement
in itself
, via its effect on the antidote. Improvement in equipment feeds on itself. This is a recipe for explosive, runaway evolution.

At the end of some years of this ding-dong invention and counterinvention, the current version of both the missile and its antidote will have attained a very high degree of sophistication. Yet at the same time here is the Red Queen effect again - there is no general reason for expecting either side in the arms race to be any more successful at doing its job than it was at the beginning of the arms race. Indeed if both the missile and its antidote have been improving at the same rate, we can expect that the latest, most advanced and sophisticated versions, and the earliest, most primitive and simplest versions will be exactly as successful as each other, against their contemporary counter-devices. There has been progress in design, but no progress in accomplishment, specifically because there has been equal progress in design on both sides of the arms race. Indeed, it is precisely
because
there has been approximately equal progress on both sides that there has been so much progress in the level of sophistication of design. If one side, say the antimissile jamming device, pulled too far ahead in the design race, the other side, the missile in this case, would simply cease to be used and manufactured: it would go ‘extinct’. Far from being paradoxical like Alice’s original example, the Red Queen effect in its arms-race context turns out to be fundamental to the very idea of progressive advancement.

I said that asymmetric arms races were more likely to lead to interesting progressive improvements than symmetric ones, and we can now see why this is, using human weapons to illustrate the point. If one nation has a 2-megaton bomb, the enemy nation will develop a 5-megaton bomb. This provokes the first nation into developing a 10-megaton bomb, which in turn provokes the second into making a 20-megaton bomb, and so on. This is a true progressive arms race: each advance on one side provokes the counter-advance on the other, and the result is a steady increase in some attribute as time goes by - in this case, explosive power of bombs. But there is no detailed, one-tonne correspondence between the designs in such a symmetric arms race, no ‘meshing’ or ‘interlocking’ of design details as there is in an asymmetric arms race such as that between missile and missile-jamming device. The missile-jamming device is designed specificially to overcome particular detailed features of the missile; the designer of the antidote takes into account minute details of the design of the missile. Then in designing a counter to the antidote, the designer of the next generation of missiles makes use of his knowledge of the detailed design of the antidote to the previous generation. This is not true of the bombs of ever-increasing megatonnage. To be sure, designers on one side may pirate good ideas, may imitate design features, from the other side. But if so, this is incidental. It is not a
necessary
part of the design of a Russian bomb that it should have detailed, one-to-one correspondences with specific details of an American bomb. In the case of an asymmetric arms race, between a lineage of weapons and the specific antidotes to those weapons, it is the one-to-one correspondences that, over the successive ‘generations’, lead to ever greater sophistication and complexity.

In the living world too, we shall expect to find complex and sophisticated design wherever we are dealing with the endproducts of a long, asymmetric arms race in which advances on one side have always been matched, on a one-to-one, point-for-point basis, by equally successful
antidotes
(as opposed to competitors) on the other. This is conspicuously true of the arms races between predators and their prey, and, perhaps even more, of arms races between parasites and hosts. The electronic and acoustic weapons systems of bats, which we discussed in Chapter 2, have all the finely tuned sophistication that we expect from the endproducts of a long arms race. Not surprisingly, we can trace this same arms race on the other side. The insects that bats prey upon have a comparable battery of sophisticated electronic and acoustic gear. Some moths even emit bat-like (ultra-) sounds that seem to put the bats off. Almost all animals are either in danger of being eaten by other animals or in danger of failing to eat other animals, and an enormous number of detailed facts about animals makes sense only when we remember that they are the endproducts of long and bitter arms races. H.B.Cott, author of the classic book
Animal Coloration
, put the point well in 1940, in what may be the first use in print of the arms-race analogy in biology:

Before asserting that the deceptive appearance of a grasshopper or butterfly is unnecessarily detailed, we must first ascertain what are the powers of perception and discrimination of the insects’ natural enemies. Not to do so is like asserting that the armour of a battle-cruiser is too heavy, or the range of her guns too great, without inquiring into the nature and effectiveness of the enemy’s armament. The fact is that in the primeval struggle of the jungle, as in the refinements of civilized warfare, we see in progress a great evolutionary armament race whose results, for defence, are manifested in such devices as speed, alertness, armour, spinescence, burrowing habits, nocturnal habits, poisonous secretions, nauseous taste, and (camouflage and other kinds of protective coloration], and for offence, in such counter-attributes as speed, surprise, ambush, allurement, visual acuity, claws, teeth, stings, poison fangs, and [lures]. Just as greater speed in the pursued has developed in relation to increased speed in the pursuer; or defensive armour in relation to aggressive weapons; so the perfection of concealing devices has evolved in response to increased powers of perception.

Arms races in human technology are easier to study than their biological equivalents because they are so much faster. We can actually see them going on, from year to year. In the case of a biological arms race, on the other hand, we can usually see only the endproducts. Very rarely a dead animal or plant fossilizes, and it is then sometimes possible to see progressive stages in an animal arms race a little more directly. One of the most interesting examples of this concerns the electronic arms race, as shown in the brain sizes of fossil animals.

Brains themselves do not fossilize but skulls do, and the cavity in which the brain was housed - the braincase - if interpreted with care, can give a good indication of brain size. I said ‘if interpreted with care’, and the qualification is an important one. Among the many problems is the following. Big animals tend to have big brains partly just because they are big, but this doesn’t necessarily mean that they are, in any interesting sense, ‘cleverer’. Elephants have bigger brains than humans but, probably with some justice, we like to think that we are cleverer than elephants and that our brains are ‘really’ bigger if you make allowance for the fact that we are much smaller animals. Certainly our brains occupy a much larger
proportion
of our body than elephants’ brains do, as is evident from the bulging shape of our skulls. This is not
just
species vanity. Presumably a substantial fraction of any brain is needed to perform routine caretaking operations around the body, and a big body automatically needs a big brain for this. We must find some way of ‘taking out’ of our calculations that fraction of brain that can be attributed simply to body size, so that we can compare what is left over as the true ‘braininess’ of animals. This is another way of saying that we need some good way of defining exactly what we mean by true braininess. Different people are at liberty to come up with different methods of doing the calculations, but probably the most authoritative index is the ‘encephalization quotient’ or EQ used by Harry Jerison, a leading American authority on brain history.

BOOK: The Blind Watchmaker
2.03Mb size Format: txt, pdf, ePub
ads

Other books

Quatrain by Sharon Shinn
A Drink Called Paradise by Terese Svoboda
Breeze of Life by Kirsty Dallas
Indian Pipes by Cynthia Riggs
Driven by Toby Vintcent
Prozac Nation by Elizabeth Wurtzel