Stiff (12 page)

Read Stiff Online

Authors: Mary Roach

BOOK: Stiff
7.85Mb size Format: txt, pdf, ePub

The cadaver before UM 006 was hit at a faster speed: 15 mph (which, were this a real side-impact accident with a passenger door to absorb some of the energy of the impact, would translate to being hit by a car going perhaps 25 or 30 mph). The impact broke his collarbone and scapula and fractured five ribs. Ribs are more important than you think.

When you breathe, you not only need to move your diaphragm to pull air into your lungs, you need the muscles attached to your' ribs and the ribs themselves. If all your ribs break, your rib cage can't help inflate your lungs the way it's supposed to, and you will find it very hard to breathe.

It is a condition called "flail chest," and people die from it.

Flail chest is one of the other things that make side impacts especially dangerous. Ribs are easier to break from the side. The rib cage is built to be compressed from the front, sternum to spine—that's how it moves when you breathe. (Up to a point, that is. Compress it too far and you can, in the words of Don Huelke, "split the heart completely in half as you would a pear.") A rib cage is not built for the sideways press. Slam it violently from the side, and its tines tend to snap.

Matt is still working on the setup. Deb is intent on her accelerometers.

Normally, accelerometers are screwed into place, but if she were to screw them into the bone, the bone would be weakened and would break more easily in the impact. Instead she secures them to the bone with wire ties and then wedges wood scrims underneath to tighten the fit. As she works, she slips the wire cutters into and out of the cadaver's mittened hand, as though he were a surgical nurse. Another way for him to help.

With the radio playing and the three of us talking, the room has a feeling of late-night congeniality. I find myself thinking that it's nice for UM 006

to have company. There can be no lonelier state of being than that of being a corpse. Here, in the lab, he's part of something, part of the group, the center of everyone's attention. Of course, these are stupid thoughts, for UM 006 is a mass of tissue and bone who can no more feel loneliness than he can feel Marth's fingers probing the flesh around his collarbone.

But that's how I feel about it at the moment.

It is past nine now. UM 006 has begun to put out a subtle gamy smell, the mild but unmistakable fetor of a butcher shop on a hot afternoon. "How long," I ask, "can he stay out at room temperature before he starts to…"

Marth waits for me to finish my sentence. "…change?" She says maybe half a day. She is looking put-upon. The ties aren't tight enough and the Krazy Glue's not crazy anymore. It's going to be a long night.

John Cavanaugh calls down that there's pizza upstairs, and the three of us, Deb, Matt Mason, and I, leave the dead man by himself. It feels a little rude.

On the way upstairs, I ask Deb how she wound up working with dead bodies for a living. "Oh, I always wanted to do cadaver research," she says, with exactly the same enthusiasm and sincerity with which a more usual individual would say "I always wanted to be an archaeologist" or "I always wanted to live by the sea."

"John was so psyched. Nobody wants to do cadaver research." In her office, she takes a bottle of a perfume called Happy from a desk drawer.

"So I smell something else," she explains. She has promised to give me some papers, and while she searches for them I look at a pile of snapshots on her desk. And then, very quickly, I don't. The photographs are close-ups from a previous cadaver's shoulder autopsy: meaty red and parted skin. Matt looks down at the pile. "These aren't your vacation shots, are they, Deb?"

By half past eleven, all that remains is to get UM 006 into driving posture.

He is slumped and leaning to one side. He is the guy next to you on the plane, asleep and inching closer to your shoulder.

John Cavanaugh takes the cadaver by the ankles and pushes back on him, to try to get him to sit up in the seat. He steps back. The cadaver slides back toward him. He pushes him again. This time he holds him while Matt encircles UM 006's knees and the entire circumference of the car seat with duct tape. "This probably won't make it into the '101 Uses'

list," observes Matt.

"His head's wrong," says John. "It needs to be straight ahead." More duct tape. The radio is playing the Romantics, "That's What I Like About You."

"He's slumping again."

"Try the winch?" Deb loops a canvas strap under his arms and presses a button that raises a ceiling-mounted motor winch. The cadaver shrugs, slowly, and holds it, like a Borscht Belt comedian. He lifts slightly from his seat, and is lowered back down, sitting straighter now. "Good, perfect," says John.

Everyone steps back. UM 006 has a comic's timing. He waits a beat, two beats, then slips forward again. You have to laugh. The absurdity of the scene and the punch-drunk hour are making it hard not to. Deb gets some pieces of foam to prop up his back, which seems to do the trick.

Matt runs a final check of the connections. The radio—I'm not making this up—is playing "Hit Me with Your Best Shot." Five more minutes pass. Matt fires the piston. It sounds a loud bang as it shoots out, though the impact itself is silent. UM 006 falls over, not like a villain shot in a Hollywood movie, but slowly, like an off-balance laundry sack. He falls over onto a foam pad that has been set out for this purpose, and John and Deb step forward to steady him. And that's that. Without the screech of skidding tires and the crunch and fold of metal, an impact is neither violent nor disturbing. Distilled to its essence, controlled and planned, it is now simply science, no longer tragedy.

The family of UM 006 does not know what happened to him this evening.

They know only that he donated his remains for use in medical education or research. There are many reasons for this. At the time a person or his family decides to donate his remains, no one knows what those remains will be used for, or even at which university. The body goes to a morgue facility at the university to which it was donated, but may be shipped, as was UM 006, from that school to another.

For a family to be fully informed of what is happening to their loved one, the information would have to come from the researchers themselves, after they've taken receipt of the body (or body part) but before they run their test. As a result of the subcommittee hearings, that was sometimes done. Automotive impact researchers who received federal NHTSA funding and who had not made it clear in their willed body consent forms that the remains might be used for research were required to contact families prior to the experiment. According to Rolf Eppinger, chief of the NHTSA Biomechanics Research Center, it was rare for the family to renege on the deceased's consent.

I spoke with Mike Walsh, who worked for one of NHTSA's main contractors, Calspan. It was Walsh who, once the body arrived, called the family to set up a meeting—preferably, owing to the highly perishable state of unembalmed remains, within a day or two after the death. You would think, as principal investigator on these studies, that Walsh would have delegated the enormously uncomfortable task to someone else. But Walsh preferred to do it himself. He told the families precisely how their loved one would be used and why. "The entire program was explained to them. Some studies were sled impact studies, some were pedestrian impact studies,[
4]
some were in full-scale crash vehicles." Clearly Walsh has a gift. Out of forty-two families contacted, only two revoked consent—not because of the nature or specifics of the study, but because they had thought the body was going to be used for organ donation.

I asked Walsh whether any family members had asked to see a copy of the study when it was published. No one had. "We got the impression, quite frankly, that we were giving people more information than they wanted to hear."

In England and other Commonwealth countries, researchers and anatomy instructors sidestep the possibility of family or public disapproval by using body parts and prosections—the name given to embalmed cadaver segments used in anatomy labs—rather than whole cadavers. England's antivivisectionists, as animal rights activists are called there, are as outspoken as America's, and the things that outrage them are more encompassing, and, dare I say it, nonsensical. To give you a taste: In 1916, a group of animal rights activists successfully petitioned the British Undertakers Association on behalf of the horses that pulled their hearses, urging members to stop making the horses wear plumes on their heads.

The British investigators know what butchers have long known: If you want people to feel comfortable about dead bodies, cut them into pieces.

A cow carcass is upsetting; a brisket is dinner. A human leg has no face, no eyes, no hands that once held babies or stroked a lover's cheek. It's difficult to associate it with the living person from which it came. The anonymity of body parts facilitates the necessary dissociations of cadaveric research: This is not a person. This is just tissue. It has no feelings, and no one has feelings for it. It's okay to do things to it which, were it a sentient being, would constitute torture.

But let's be rational. Why is it okay for someone to guide a table saw through Granddad's thigh and then pack up the leg for shipment to a lab, where it will be suspended from a hook and impacted with a simulated car bumper, yet not okay to ship him and use him whole? What makes cutting his leg off first any less distasteful or disrespectful? In 1901, the French surgeon René Le Fort devoted a great deal of his time to studying the effects of blunt impact on the bones of the face. Sometimes he severed the heads: "After decapitation, the head was violently thrown against the rounded border of a marble table…," reads an experiment description from
The Maxillo-Facial Works of René Le Fort
. Other times he left the heads on: "The entire cadaver was in a dorsal… position with the head hanging back over the table. A violent blow was given with a wooden club on the right upper jaw…." What person who takes offense at the latter could reasonably be comfortable with the former? What, ethically or aesthetically, is the difference?

Furthermore, it's often desirable, from the standpoint of biomechanical fidelity, to use the entire enchilada. A shoulder mounted on a stand and hit with an impactor doesn't behave in the same manner, or incur the same injuries, as a shoulder mounted on a torso. When shoulders on stands start getting driver's licenses, then it will make sense to study them. Even scientific inquiries as seemingly straightforward as
How much
will a human stomach hold before it bursts
? have gone the extra mile. In 1891, an inquiring German doctor surnamed Key-Aberg undertook a replication of a French study done six years earlier, in which isolated human stomachs were filled to the point of rupture. Key-Aberg's experiment differed from that of his French predecessor in that he left the stomachs inside their owners. He presumably felt that this better approximated the realities of a hearty meal, for rare indeed is the dinner party attended by freestanding stomachs. To that end, he is said to have made a point of composing his corpses in the sitting position. In this case, our man's attention to biomechanical correctness proved not to matter. In both cases, according to a 1979 article in
The American Journal of Surgery
, the stomachs gave out at 4,000 cc's, or about four quarts.[
5]

Many times, of course, a researcher doesn't need a whole body, just a piece of it. Orthopedic surgeons developing new techniques or new replacement joints use limbs instead of whole cadavers. Ditto product safety researchers. You do not need an entire dead body to find out, say, what happens to a finger when you close a particular brand of power window on it. You need some fingers. You do not need an entire body to see whether softer baseballs cause less damage to Little Leaguers' eyes.

You need some eyes, mounted in clear plastic simulated eye sockets so that high-speed video cameras can document exactly what is happening when the baseballs hit them.
[6]

Here's the thing: No one really
wants
to work with whole cadavers.

Unless researchers really need to, they won't. Rather than use whole bodies to simulate swimmers in a test of a safety cage for outboard motor propellers, Tyler Kress, who runs the Sports Biomechanics Lab at the University of Tennessee's Engineering Institute for Trauma and Injury Prevention, went to the trouble of tracking down artificial ball-and-socket hip joints and gluing them to cadaver legs with surgical cement and then gluing the resulting cadaver-leg-and-hip-joint hybrid to a crash test dummy torso.

Kress says it wasn't fear of public reprisal that led him to do this, but practicality. "A leg," he told me, "is so much easier to work with and handle." Parts are easier to lift and maneuver. They take up less space in the freezer. Kress has worked with just about all of them: heads, spines, shins, hands, fingers. "Legs, mostly," he says. He spent last summer looking at the biomechanics of twisted and broken ankles. This summer he and his colleagues are running instrumented leg-drop tests to look at the sorts of injuries that accompany vertical drops, such as befall mountain bikers and snowboarders. "I would challenge you to find anybody that's broken more legs than we have."

I asked Kress, in an e-mail exchange, whether he has had occasion to wrangle a cadaveric crotch into an athletic cup and take aim at it with baseballs, hockey pucks, what-have-you. He has not, nor is he aware of any sports injury researcher who has. "You would think that…

'racking'—i.e., scrotal impacts— would be a high research priority," he wrote. "I'm thinking no one wants to go there in the lab."

Which is not to say that science does not, occasionally, go there. At the local medical school library, I ran a Pub Med search for journal articles featuring the words "cadaveric" and "penis." With the monitor shoved back as far as possible into the cubicle, lest the people on either side of me see the screen and alert the librarian, I browsed twenty-five entries, most of them anatomical investigations. There were the urologists from Seattle investigating the distribution pattern of dorsal nerves along the penile shaft (twenty-eight cadaver penises).[
7]
There were the French anatomists injecting red liquid latex into penile arteries to study vascular flow (twenty cadaver penises). There were the Belgians calculating interference of the ischiocavernosus muscles in rigidity during penile erection (thirty cadaver penises). For the past twenty years, all the world over, people in white coats and squeaking shoes have been calmly, methodically making the cut that dare not speak its name. It makes Tyler Kress seem like a cream puff.

Other books

A Lady's Vanishing Choices by Woodson, Wareeze
Seducing Avery by Barb Han
Sally James by Otherwise Engaged
The India Fan by Victoria Holt
Time for Eternity by Susan Squires
Caring For Mary by Nicholas Andrefsky
IceHuntersMate by Marisa Chenery