Authors: Javier Casado
Por poner algunos ejemplos, en la ISS el sistema de control medioambiental mantiene una temperatura constante entre 20 y 25 ºC, y una presión atmosférica de 1 atmósfera +/- 13%. Entre las especificaciones (aunque con poca capacidad de control una vez en operación) está también el nivel de ruido, que para la ISS debe mantenerse por debajo de los 60 dB. En combinación con los sistemas de suministro de agua, preparación de comidas y gestión de residuos, se consigue así mantener al hombre en unas condiciones aceptables de vida mientras se encuentra inmerso en el vacío hostil del espacio.
En la órbita terrestre, la superficie de un satélite artificial puede pasar rápidamente de los 80 ºC cuando está iluminado por el Sol, a los 200 ºC bajo cero en zona de sombra. Mantener los equipos de su interior a una temperatura adecuada es la tarea encomendada al subsistema de control térmico.
Estas temperaturas, típicas de un satélite en órbita terrestre, pueden ser aún más extremas en el caso de una sonda enviada a Mercurio, donde la temperatura en el lado iluminado crecería espectacularmente, manteniéndose a un nivel similar en el lado de sombra. Para el caso de sondas interplanetarias que se alejen del Sol, como las Voyager o la New Horizons enviada a Plutón, las temperaturas en el lado de sombra caerán cerca de los 3 K (-270ºC) a los que se encuentra el medio interestelar, mientras que la cara levemente iluminada por el Sol apenas conseguirá acercarse a los -200 ºC.
A pesar de ello, las temperaturas de su interior deberán mantenerse a unos niveles mucho más cercanos a los habituales en nuestro planeta, si queremos que sus diferentes equipos puedan funcionar. Por poner unos ejemplos, la electrónica habitualmente sólo trabaja bien entre los -10 ºC y los 40 ºC; los depósitos y conductos del propulsante de control de actitud deben mantenerse entre los 10 ºC y los 50 ºC, aproximadamente; y las baterías, uno de los equipos más exigentes, requieren estar entre 0 ºC y 25 ºC. Todo ello por no hablar de vehículos tripulados, donde la temperatura del habitáculo debe mantenerse a niveles próximos a los 20 ºC con las menores variaciones posibles.
Todo ello obliga a los diseñadores de vehículos espaciales a incorporar una serie de sistemas encargados de mantener su interior en los rangos de temperaturas requeridos por su carga, independientemente de las temperaturas extremas que se estén dando en el exterior. Y esto, por supuesto, con un mínimo peso y un mínimo consumo de potencia (a poder ser, nulo). El conjunto de dispositivos que permiten dar solución a este serio problema constituyen el subsistema de control térmico de la nave, uno de los más complejos de diseñar en todo vehículo espacial.
Una tarea complicada
Y es que conseguir el objetivo de una temperatura “agradable” en el interior, independientemente de las temperaturas extremas del exterior y de sus enormes fluctuaciones, y sin agotar todas las reservas de energía de la nave en el intento, no es tarea fácil.
En primer lugar, habrá que tener en cuenta los diferentes focos de calor, internos y externos, que afectan al vehículo. Entre los primeros, tenemos el calor disipado por los equipos, mientras que entre los segundos está el calor recibido por el Sol, el del albedo (reflejo de la luz solar) del planeta que se está orbitando (si se trata de una misión orbital), y el de la radiación infrarroja de dicho planeta. Sin olvidar, además, las bruscas variaciones en el flujo de calor exterior a la nave cuando ésta pasa de una zona iluminada a otra de sombra.
¿Cómo vivir con todo esto? La forma más habitual de conseguirlo es intentando aislar térmicamente el vehículo de su entorno exterior. Dado que las mayores fluctuaciones proceden de fuera, aislándolo se consigue que la única fuente de calor sea la de sus propios equipos, mucho más controlable y continua. Por ello es habitual que la mayor parte de satélites y sondas espaciales presenten un color dorado, correspondiente a los aislantes térmicos multicapa que intentan aislarlos del entorno térmico exterior. Se trata de unas mantas aislantes de una enorme eficiencia con un mínimo peso, formadas por varias láminas superpuestas de mylar o kapton aluminizados, unas películas plásticas especiales de gran resistencia y capaces de soportar amplios rangos de temperatura. El color dorado brillante, por su parte, contribuye a que estas mantas tengan una enorme reflectividad, manteniendo a niveles bajísimos el nivel de calor absorbido por radiación. En otros casos, no obstante, puede ser deseable lo contrario: en misiones destinadas a operar en el Sistema Solar exterior puede ser interesante limitar al mínimo las pérdidas de calor interior (de los equipos) a la vez que se maximiza la absorción del escaso calor que pueda recibirse por radiación. Todo depende de las necesidades de la misión.
Imagen: El recubrimiento dorado de buena parte de satélites y sondas espaciales corresponde a las mantas térmicas que aíslan al vehículo del medio ambiente espacial. (
Foto: ESA
)
Una mantita… y a sudar
Bien, ya tenemos nuestro vehículo bien arropadito y aislado del temperamental entorno térmico del exterior (más o menos… pues el aislamiento perfecto nunca existe, lógicamente). Pero si lo dejamos así, el calor generado por los equipos irá haciendo aumentar poco a poco la temperatura interior hasta extremos inaceptables. De modo que hay que disponer de algún sistema capaz de evacuar al exterior ese exceso de calor.
El problema es que en el vacío del espacio sólo hay una forma de evacuar calor: por radiación. En el espacio no existe la convección, que tanto ayuda a la transmisión de calor en la Tierra. Ni la conducción. Sólo mediante placas radiantes podremos emitir al exterior el calor sobrante de nuestra nave espacial.
Con este fin, todos los vehículos espaciales equipan uno o varios radiadores encargados de evacuar el exceso de calor. Pero a veces esto solo no es suficiente. Y es que diseñar un radiador es sencillo si la generación de calor en el interior es más o menos constante, y si la temperatura también lo es. Pero si cambia uno de estos parámetros, podemos encontrarnos con que el radiador disipe más o menos calor del que desearíamos. Para ello, entre otras cosas, se inventaron las persianas.
Sí, como en casa, sólo que al revés: en casa cerramos la persiana en verano para evitar que nos entre el Sol, y la abrimos en invierno para aprovechar su calorcito. Pues con los radiadores suele hacerse algo similar: muchos de ellos se equipan con una especie de persianas venecianas que exponen la placa radiante cuando la temperatura de su superficie alcanza un valor determinado, permitiendo así la evacuación de calor al exterior, y se cierran si dicha temperatura baja de un cierto límite establecido, anulando el efecto del radiador y evitando el enfriamiento excesivo del interior. Problema resuelto, aunque, eso sí, añadiendo cierto peso y consumo energético para el accionamiento de las persianas. Nadie es perfecto…
Imagen: El transbordador espacial norteamericano lleva sus radiadores instalados en la parte interior de las compuertas de la bodega. Por esta razón, las compuertas siempre permanecen abiertas cuando se alcanza la órbita terrestre, para irradiar el exceso de calor al exterior. (
Foto: NASA
)
Buscando el equilibrio
Bien, ya hemos aislado nuestro vehículo del exterior, hemos calculado el calor generado en su interior, y hemos dispuesto un radiador, con persianas si es necesario, para evacuar el sobrante. Pero que tengamos en el interior el calor que queremos, no significa que esté bien repartido. Efectivamente, lo más habitual es que unos cuantos equipos sean los que generan la mayor parte del calor, elevando su temperatura por encima de lo deseable, mientras que otros se mantienen muy por debajo de lo requerido. Habrá que hacer lo que sea necesario para que el exceso de calor de unos caliente a los otros.
Hay varias formas de conseguirlo. Si fuera posible, podrían ponerse diferentes equipos en contacto, transmitiéndose calor de los más calientes a los más fríos por conducción a través de sus carcasas, o bien situándolos sobre placas conductoras que repartan el calor entre los que están en contacto con ella. Pero también podemos jugar con las ubicaciones y los colores y acabados exteriores de los diferentes equipos para así modificar sus coeficientes de emisión y de absorción de calor por radiación entre ellos, intentando conseguir un equilibrio térmico pasivo, sin necesidad de elementos adicionales que añadan peso o consumo energético.
Pero no siempre de esta forma se consiguen los resultados deseados, y en esos casos hay que añadir otros elementos que ayuden a distribuir el calor entre los diferentes equipos, como conductos con líquido en su interior que transportan el calor de unos elementos a otros. Se trata en estos casos de dispositivos pasivos, que no consumen electricidad, pero añaden un peso indeseado. En el último extremo, para los elementos más fríos también podrá hacerse necesario utilizar calentadores eléctricos cuando todas las demás soluciones se demuestren insuficientes.
Vehículos tripulados: los más exigentes
El caso más exigente de control térmico lo representan, sin duda, los vehículos tripulados. El estrecho margen de temperaturas en que debe mantenerse el habitáculo para que la tripulación pueda desenvolverse confortablemente, obliga siempre al empleo de sistemas de control térmico activos, mucho más eficaces que los pasivos pero siempre indeseables por el sobrepeso y consumo energético que conllevan.
Aunque los sistemas son complejos, podemos imaginarlos en una primera aproximación como sistemas de aire acondicionado de gran sofisticación. Y, como todo sistema de aire acondicionado, al final generarán calor que será necesario evacuar al exterior, de nuevo mediante radiadores, naturalmente. Es la razón, por ejemplo, por la cual el transbordador espacial mantiene las compuertas de su bodega abiertas durante toda su estancia en órbita: la cara interior de dichas compuertas está cubierta por los radiadores encargados de disipar el calor sobrante de su interior.
Casos especiales: telescopios infrarrojos y vehículos de reentrada
Si ya es difícil mantener un correcto entorno térmico en vehículos “normales”, imagínese lo que supone mantener el sensor principal de un telescopio espacial infrarrojo a temperaturas próximas al cero absoluto mientras a pocos centímetros los paneles solares se calientan hasta cerca de los 200 ºC.
En estos casos, además de todos los sistemas de control ya descritos, se hace necesario contar con algo adicional: la refrigeración directa con un líquido criogénico, que se va haciendo evaporar poco a poco para mantener su temperatura constante. En estos casos, la vida útil del telescopio suele determinarla el agotamiento de dicho refrigerante.
Una solución similar se utiliza para la refrigeración del habitáculo del Space Shuttle durante la reentrada en la atmósfera. Con las compuertas de la bodega necesariamente cerradas y eliminada así la posibilidad de evacuación de calor por radiación justamente en los momentos de mayor calentamiento exterior, la única forma de refrigerar es la evaporación. Depósitos de agua y amoniaco se disponen con este fin, expulsándose sus vapores al exterior tras haberse utilizado para enfriar el circuito principal de refrigeración del habitáculo.
Todos lo sabemos: un lanzador espacial es básicamente un gigantesco depósito de propulsantes con un motor en su base y una pequeña carga útil en la punta. Por eso, si queremos intentar aligerar el peso del lanzador, uno de los principales puntos a atacar es precisamente el peso del depósito. Pero la tarea no es tan fácil como parece.
En los orígenes de la cohetería, los depósitos de propulsante en los cohetes eran eso, depósitos simples que se alojaban en el interior de la estructura principal del aparato. La única finalidad del depósito era contener los gases o líquidos a la presión y temperatura requeridas, y ser capaz a la vez de soportar las aceleraciones y vibraciones del ascenso sin generar grietas que pudieran dar lugar a fugas. Aunque en algunos casos las presiones a soportar en su interior podían ser grandes, esta aplicación era fácilmente solventada con depósitos simples no muy diferentes a los utilizados en la industria en general o en vehículos más convencionales. El diseño de los primeros cohetes realmente avanzados de la historia, las V-2 alemanas, seguía esta filosofía: una estructura para el cohete que soportaba las cargas principales, y unos depósitos independientes en su interior.