Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by the Year 2100 (52 page)

BOOK: Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by the Year 2100
4.89Mb size Format: txt, pdf, ePub
FOUR STAGES OF TECHNOLOGY

The combination of changing social conditions and the mastery of the four forces propelled Europe to the forefront of nations. But technologies are dynamic, changing all the time. They are born, evolve, and rise and fall. To see how specific technologies will change in the near future, it is useful to see how technologies obey certain laws of evolution.

Mass technologies usually evolve in four basic stages. This can be seen in the evolution of paper, running water, electricity, and computers. In stage I, the products of technology are so precious that they are closely guarded. Paper, when it was invented in the form of papyrus by the ancient Egyptians and then by the Chinese thousands of years ago, was so precious that one papyrus scroll was closely guarded by scores of priests. This humble technology helped to set into motion ancient civilization.

Paper entered stage II around 1450, when Gutenberg invented printing from movable type. This made possible the “personal book,” so that one person could possess one book containing the knowledge of hundreds of scrolls. Before Gutenberg, there were only 30,000 books in all Europe. By 1500, there were 9 million books, stirring up intense intellectual ferment and stimulating the Renaissance.

But around 1930, paper hit stage III, when the cost fell to a penny a sheet. This made possible the personal library, where one person could possess hundreds of books. Paper became an ordinary commodity, sold by the ton. Paper is everywhere and nowhere, invisible and ubiquitous. Now we are in stage IV, where paper is a fashion statement. We decorate our world with paper of all colors, shapes, and sizes. The largest source of urban waste is paper. So paper evolved from being a closely guarded commodity to being waste.

The same applies to running water. In ancient times, in stage I, water was so precious that a single well had to be shared by an entire village. This lasted for thousands of years, until the early 1900s, when personal plumbing was gradually introduced and we entered stage II. After World War II, running water entered stage III and became cheap and available to an expanding middle class. Today, running water is in stage IV, a fashion statement, appearing in numerous shapes, sizes, and applications. We decorate our world with water, in the form of fountains and displays.

Electricity also went through the same stages. With the pioneering work of Thomas Edison and others, in stage I a factory shared a single lightbulb and electric motor. After World War I, we entered stage II with the personal lightbulb and personal motor. Today, electricity has disappeared; it is everywhere and nowhere. Even the word “electricity” has pretty much disappeared from the English language. At Christmas, we use hundreds of blinking lights to decorate our homes. We assume that electricity is hidden in the walls, ubiquitous. Electricity is a fashion statement, lighting up Broadway and decorating our world.

In stage IV, both electricity and running water have become utilities. They are so cheap, and we consume so much of them, that we meter the amount of electricity and water that runs into our home.

The computer follows the same pattern. Companies that understood this thrived and prospered. Companies that didn’t were driven almost to bankruptcy. IBM dominated stage I with the mainframe computer in the 1950s. One mainframe computer was so precious that it was shared by 100 scientists and engineers. However, the management of IBM failed to appreciate Moore’s law, so they almost went bankrupt when we entered stage II in the 1980s, with the coming of the personal computer.

But even personal computer manufacturers got complacent. They envisioned a world with stand-alone computers on every desk. They were caught off guard with the coming of stage III, Internet-linked computers by which one person could interact with millions of computers. Today, the only place you can find a stand-alone computer is in a museum.

So the future of the computer is to eventually enter stage IV, where it disappears and gets resurrected as a fashion statement. We will decorate our world with computers. The very word
computer
will gradually disappear from the English language. In the future, the largest component of urban waste will not be paper but chips. The future of the computer is to disappear and become a utility, sold like electricity and water. Computer chips will gradually disappear as computation is done “in the clouds.”

So the evolution of computers is not a mystery; it is following the well-worn path of its predecessors, like electricity, paper, and running water.

But the computer and the Internet are still evolving. Economist John Steele Gordon was asked if this revolution is over. “Heavens, no. It will be a hundred years before it fully plays out, just like the steam engine. We are now at the point with the Internet that they were with the railroad in 1850. It’s just the beginning.”

Not all technologies, we should point out, enter stages III and IV. For example, consider the locomotive. Mechanized transportation entered stage I in the early 1800s with the coming of the steam-driven locomotive. A hundred people would share a single locomotive. We entered stage II with the introduction of the “personal locomotive,” otherwise known as the car, in the early 1900s. But the locomotive and the car (essentially a box on rails or wheels) have not changed much in the past decades. What has changed are refinements, such as more powerful and efficient engines as well as intelligence. So technologies that cannot enter stages III and IV will be embellished; for example, they will have chips placed in them so they become intelligent. Some technologies evolve all the way to stage IV, like electricity, computers, paper, and running water. Others stay stuck at an intermediate stage, but they continue to evolve by having incremental improvements such as chips and increased efficiency.

WHY BUBBLES AND CRASHES?

But today, in the wake of the great recession of 2008, some voices can be heard saying that all this progress was an illusion, that we have to return to the simpler days, that there is something fundamentally flawed with the system.

When taking the long view of history, it is easy to point to the unexpected, with colossal bubbles and crashes that seem to come out of nowhere. They seem random, a by-product of the fickleness of fate and human folly. Historians and economists have written voluminously about the crash of 2008, trying to make sense out of it by examining a variety of causes, such as human nature, greed, corruption, lack of regulation, weaknesses in oversight,
etc.

However, I have a different way of looking at the great recession, looking through the lens of science. In the long term, science is the engine of prosperity. For example,
The Oxford Encyclopedia of Economic History
cites studies that “attribute 90 percent of income growth in England and the United States after 1780 to technological innovation, not mere capital accumulation.”

Without science, we would be thrown back millennia into the dim past. But science is not uniform; it comes in waves. One seminal breakthrough (for example, the steam engine, the lightbulb, the transistor) often causes a cascade of secondary inventions that then create an avalanche of innovation and progress. Since they create vast amounts of wealth, these waves should be reflected in the economy.

The first great wave was steam power, which eventually led to the creation of the locomotive. Steam power fed the Industrial Revolution, which would turn society upside down. Fabulous wealth was created by steam power. But under capitalism, wealth is never stagnant. Wealth has to go somewhere. Capitalists are ceaselessly hunting for the next break, and will shift this wealth to invest in even more speculative schemes, sometimes with catastrophic results.

In the early 1800s, much of the excess wealth generated by steam power and the Industrial Revolution went into locomotive stocks on the London Stock Exchange. In fact, a bubble began to form, with scores of locomotive companies appearing on the London Exchange. Virginia Postrel, business writer for the
New York Times,
writes, “A century ago, railroad companies accounted for half the securities listed on the New York Stock Exchange.” Since the locomotive was still in its infancy, this bubble was unsustainable, and it finally popped, creating the Crash of 1850, one of the great collapses in the history of capitalism. This was followed by a series of minicrashes that occurred nearly every decade, created by the excess wealth spawned by the Industrial Revolution.

There is irony here: the heyday of the railroad would be the 1880s and 1890s. So the Crash of 1850 was due to speculative fever and the wealth created by science, but the real job of railing the world would take many more decades to mature.

Thomas Friedman writes, “In the 19th century, America had a railroad boom, bubble and bust …. But even when that bubble burst, it left America with an infrastructure of railroads that made transcontinental travel and shipping dramatically easier and cheaper.”

Instead of capitalists learning this lesson, this cycle began to repeat soon afterward. A second great wave of technology spread, led by the electric and automotive revolutions of Edison and Ford. The electrification of the factory and household, as well as the proliferation of the Model T, once again created fabulous wealth. As always, excess wealth had to go somewhere. In this case, it went into the U.S. Stock Exchange, in the form of a bubble in utility and automotive stocks. People ignored the lesson of the Crash of 1850, since that had happened eighty years earlier in the dim past. From 1900 to 1925, the number of automobile startup companies hit 3,000, which the market simply could not support. Once again, this bubble was unsustainable. For this and other reasons, the bubble popped in 1929, creating the Great Depression.

But the irony here is that the paving and electrification of America and Europe would not take place until after the crash, during the 1950s and 1960s.

More recently, we had the third great wave of science, the coming of high tech, in the form of computers, lasers, space satellites, the Internet, and electronics. The fabulous wealth created by high tech had to go somewhere. In this case, it went into real estate, creating a huge bubble. With the value of real estate exploding through the roof, people began to borrow against the value of their homes, using them as piggy banks, which further accelerated the bubble. Unscrupulous bankers fueled this bubble by giving away home mortgages like water. Once again, people ignored the lesson of the crashes of 1850 and 1929, which happened 160 and 80 years in the past. Ultimately, this new bubble could not be sustained, and we had the crash of 2008 and the great recession.

Thomas Friedman writes, “The early 21st century saw a boom, bubble and now a bust around financial services. But I fear all it will leave behind are a bunch of empty Florida condos that never should have been built, used private jets that the wealthy can no longer afford and the dead derivative contracts that no one can understand.”

But in spite of all the silliness that accompanied the recent crash, the irony here is that the wiring and networking of the world will take place after the crash of 2008. The heyday of the information revolution is yet to come.

This leads to the next question: What is the fourth wave? No one can be sure. It might be a combination of artificial intelligence, nanotechnology, telecommunications, and biotechnology. As with previous cycles, it may take another eighty years for these technologies to create a tidal wave of fabulous wealth. Around the year 2090, hopefully people will not ignore the lesson of the previous eighty years.

WINNERS AND LOSERS: JOBS

But as technologies evolve, they create abrupt changes in the economy that sometimes lead to social dislocations. In any revolution, there are winners and losers. This will become more evident by midcentury. We no longer have blacksmiths and wagonmakers in every village. Moreover, we do not mourn the passing of many of these jobs. But the question is: What jobs will flourish by midcentury? How will the evolution of technology change the way we work?

We can partially determine the answer by asking a simple question: What are the limitations of robots? As we have seen, there are at least two basic stumbling blocks to artificial intelligence: pattern recognition and common sense. Therefore, the jobs that will survive in the future are, in the main, those that robots cannot perform—ones that require these two abilities.

Among blue-collar workers, the losers will be workers who perform purely repetitive tasks (like autoworkers on the factory line) because robots excel at this. Computers give the illusion that they possess intelligence, but that is only because they can add millions of times faster than we can. We forget that computers are just sophisticated adding machines, and repetitive work is what they do best. That is why some automobile assembly-line workers have been among the first to suffer from the computer revolution. This means that any factory work that can be reduced to a set of scripted, repetitive motions will eventually disappear.

Surprisingly, there is a large class of blue-collar work that
will
survive the computer revolution and even flourish. The winners will be those who perform nonrepetitive work that requires pattern recognition. Garbage collectors, police officers, construction workers, gardeners, and plumbers will all have jobs in the future. Garbage collectors, in order to pick up the trash at different homes and apartments, have to recognize the garbage bags, place them in the truck, and haul them out to the waste yard. But every piece of trash requires a different method of disposal. For construction workers, every task requires different tools, blueprints, and instructions. No two construction sites or two tasks are the same. Police officers have to analyze a variety of crimes in different situations. Moreover, they also have to understand the motives and methods of criminals, which is far beyond the ability of any computer. Similarly, every garden and sink is different, requiring different skills and tools of the plumber.

Other books

The Bridesmaid Pact by Julia Williams
The Next Eco-Warriors by Emily Hunter
Watching Over Us by Will McIntosh
Silhouette of a Sparrow by Molly Beth Griffin
Darling Enemy by Diana Palmer
Journeys with My Mother by Halina Rubin
Finn by Ahren Sanders