Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by the Year 2100 (46 page)

BOOK: Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by the Year 2100
2.63Mb size Format: txt, pdf, ePub

Worse, the rocket must carry its own fuel, which adds to its weight. Airplanes partially get around this problem because they can scoop oxygen from the air outside and then burn it in their engines. But since there is no air in space, the rocket must carry its own tanks of oxygen and hydrogen.

Not only is this the reason space travel is so expensive, it is also the reason we don’t have jet packs and flying cars. Science fiction writers (not real scientists) glamorized the day when we would all put on jet packs and fly to work, or go on a Sunday day trip blasting off in our family flying car. Many people became disillusioned by futurists because these predictions never came to pass. (That is why we see a rash of articles and books with cynical titles like
“Where’s My Jetpack?”
) But a quick calculation shows the reason. Jet packs already exist; in fact, the Nazis used them briefly during World War II. But hydrogen peroxide, the common fuel used in jet packs, quickly runs out, so a typical flight in a jet pack lasts only a few minutes. Also, flying cars that use helicopter blades burn up an enormous amount of fuel, making them far too costly for the average suburban commuter.

CANCELING THE MOON PROGRAM

Because of the enormous cost of space travel, currently the future of the manned exploration of space is in flux. Former president George W. Bush presented a clear but ambitious plan for the space program. First, the space shuttle would be retired in 2010 and replaced in 2015 by a new rocket system called Constellation. Second, astronauts would return to the moon by 2020, eventually setting up a permanent manned base there. Third, this would pave the way for an eventual manned mission to Mars.

However, the economics of space travel have changed significantly since then, especially because the great recession has drained funds for future space missions. The Augustine Commission report, given to President Barack Obama in 2009, concluded that the earlier plan was unsustainable given current funding levels. In 2010, President Obama endorsed the findings of the Augustine report, canceling the space shuttle and its replacement that was to set the groundwork for returning to the moon. In the near term, without the rockets to send our astronauts into space, NASA will be forced to rely on the Russians. In the meantime, this provides an opportunity for private companies to create the rockets necessary to continue the manned space program. In a sharp departure from the past, NASA will no longer be building the rockets for the manned space program. Proponents of the plan say it will usher in a new age of space travel, when private enterprise takes over. Critics say the plan will reduce NASA to “an agency to nowhere.”

LANDING ON AN ASTEROID

The Augustine report laid out what it called the flexible path, containing several modest objectives that did not require so much rocket fuel; for example, traveling to a nearby asteroid that happened to be floating by or traveling to the moons of Mars. Such an asteroid, it was pointed out, may not even be on our sky charts yet; it might be a wandering asteroid that might be discovered in the near future.

The problem, the Augustine report said, is that the rocket fuel for the landing and return mission from the moon, or especially from Mars, would be prohibitively expensive. But since asteroids and the moons of Mars have very low gravitational fields, these missions would not require so much rocket fuel. The Augustine report also mentioned the possibility of visiting the Lagrange points, which are the places in outer space where the gravitational pull of the earth and moon cancel each other out. (These points might serve as a cosmic dump, where ancient pieces of debris from the early solar system have collected, so by visiting them astronauts may find interesting rocks dating back to the formation of the earth-moon system.)

Landing on an asteroid would certainly be a low-cost mission, since asteroids have very weak gravitational fields. (This is also the reason asteroids are irregularly shaped, rather than round. In the universe, large objects—such as stars, planets, and moons—are all round because gravity pulls evenly. Any irregularity in the shape of a planet gradually disappears as gravity compresses the crust. But the gravity field of an asteroid is so weak that it cannot compress the asteroid into a sphere.)

One possibility is the asteroid Apophis, which will make an uncomfortably close pass in 2029. Apophis is about 1,000 feet across, the size of a large football stadium, and will come so close to the earth that it will actually pass beneath some of our satellites. Depending on how the orbit of the asteroid is distorted by this close pass, it may swing back to the earth in 2036, where there is a tiny chance (1 out of 100,000) that it might hit the earth. If this were to happen, it would hit with the force of 100,000 Hiroshima bombs, sufficient to destroy an area as large as France with firestorms, shock waves, and fiery debris. (By comparison, a much smaller object, probably the size of an apartment building, slammed into Tunguska, Siberia, in 1908, with the force of about 1,000 Hiroshima bombs, wiping out 1,000 square miles of forest and creating a shock wave felt thousands of miles away. It also created a strange glow seen over Asia and Europe, so that people in London could read the newspapers at night.)

Visiting Apophis would not strain the NASA budget, since the asteroid is coming near earth anyway, but landing on the asteroid might pose a problem. Since it has a weak gravity field, one would actually dock with the asteroid, rather than land on it in the traditional sense. Also, the asteroid is probably spinning irregularly, so precise measurements have to be made before landing. It would be interesting to test to see how solid the asteroid is. Some believe that an asteroid may be a collection of rock loosely held together by a weak gravity field. Others believe that it may be solid. Determining the consistency of an asteroid may be important one day, if we have to use nuclear weapons to blow one up. An asteroid, instead of being pulverized into a fine powder, might instead break up into several large pieces. If so, then the danger from these pieces might be greater than the original threat. A better idea may be to nudge the asteroid out of the way before it comes close to earth.

LANDING ON A MOON OF MARS

Although the Augustine report did not support a manned mission to Mars, one intriguing possibility is to send astronauts to visit the moons of Mars, Phobos and Deimos. These moons are much smaller than earth’s moon and hence have a very low gravitational field. There are several advantages to landing on the moons of Mars, in addition to saving on cost.

1. First, these moons could be used as space stations. They would provide a cheap way of analyzing the planet from space without visiting it.
2. Second, they could eventually provide an easy way to access Mars. Phobos is less than 6,000 miles from the center of Mars, so a quick journey to the Red Planet can be made within a matter of hours.
3. These moons would probably have caves that could be used for a permanent manned base to protect against meteors and radiation. Phobos, in particular, has the huge Stickney crater on its side, indicating that the moon was probably hit by a huge meteor and almost blown apart. However, gravity slowly brought back the pieces and reassembled the moon. There are probably plenty of caves and gaps left over from this ancient collision.
BACK TO THE MOON

The Augustine report also mentioned a Moon First program, where we would go back to the moon, but only if more funding were available—at least $30 billion over ten years. Since that is unlikely, the moon program, in effect, is canceled, at least for the coming years.

The canceled moon mission was called the Constellation Program, which consisted of several major components. First was the booster rocket, the Ares, the first major U.S. booster rocket since the old Saturn rocket was mothballed back in the 1970s. On top of the Ares sat the Orion module, which could carry six astronauts to the space station or four astronauts to the moon. Then there was the Altair lander, which was supposed to actually land on the moon.

The old space shuttle, where the shuttle rocket was placed on the side of the booster rocket, had a number of design flaws, including the tendency of the rocket to shed pieces of foam. This had disastrous consequences for the Space Shuttle
Columbia,
which broke up on reentry in 2003, killing seven brave astronauts, because a piece of foam from the booster rocket hit the shuttle and made a hole in its wing during takeoff. Upon reentry, hot gases penetrated the hull of the
Columbia,
killing everyone inside and causing the ship to break up. In the Constellation, with the crew module placed directly on top of the booster rocket, this would no longer be a problem.

The Constellation program had been called “an Apollo program on steroids” by the press, since it looked very much like the moon rocket program of the 1970s. The Ares I booster was to be 325 feet tall, comparable to the 363-foot Saturn V rocket. It was supposed to carry the Orion module into space, replacing the old space shuttle. But for very heavy lifting, NASA was to use the Ares V rocket, which was 381 feet tall and capable of taking 207 tons of payload into space. The Ares V rocket would have been the backbone of any mission to the moon or Mars. (Although the Ares has been canceled, there is talk of perhaps salvaging some of these components for future missions.)

PERMANENT MOON BASE

Although the Constellation Program was canceled by President Obama, he left open several options. The Orion module, which was to have taken our astronauts back to the moon, is now being considered as an escape pod for the International Space Station. At some point in the future, when the economy recovers, another administration may want to set its sights on the moon again, including a moon base.

The task of establishing a permanent presence on the moon faces many obstacles. The first is micrometeorites. Because the moon is airless, rocks from space frequently hit it. We can see this by viewing its surface, pockmarked by meteorite collisions, some dating back billions of years.

I got a personal look at this danger when I was a graduate student at the University of California at Berkeley. Moon rocks brought back from space in the early 1970s were creating a sensation in the scientific community. I was invited into a laboratory that was analyzing moon rock under a microscope. The rock I saw looked ordinary, since moon rock very closely resembles earth rock, but under the microscope I got quite a shock. I saw tiny meteor craters in the rock, and inside them I saw even tinier craters. Craters inside craters inside craters, something I had never seen before. I immediately realized that without an atmosphere, even the tiniest microscopic piece of dirt, hitting you at 40,000 miles per hour, could easily kill you or at least penetrate your space suit. (Scientists understand the enormous damage created by these micrometeorites because they can simulate these impacts, and they have created huge gun barrels in their labs that can fire metal pellets to study these meteor impacts.)

One possible solution is to build an underground lunar base. Because of the moon’s ancient volcanic activity, there is a chance our astronauts can find a lava tube that extends deep into the moon’s interior. (Lava tubes are created by ancient lava flows that have carved out cavelike structures and tunnels underground.) In 2009, astronomers found a lava tube about the size of a skyscraper that might serve as a permanent base on the moon.

This natural cave could provide cheap protection for our astronauts against radiation from cosmic rays and solar flares. Even taking a transcontinental flight from New York to Los Angeles exposes us to a millirem of radiation per hour (equivalent to getting a dental X-ray). For our astronauts on the moon, the radiation might be so intense that they might need to live in underground bases. Without an atmosphere, a deadly rain of solar flares and cosmic rays would pose an immediate risk to astronauts, causing premature aging and even cancer.

Weightlessness is also a problem, especially for long missions in space. I had a chance to visit the NASA training center in Cleveland, Ohio, where extensive tests are done on our astronauts. In one test I observed, the subject was suspended in a harness so that his body was parallel to the ground. Then he began to run on a treadmill, whose tracks were vertical. By running on this treadmill, NASA scientists could simulate weightlessness while testing the endurance of the subject.

When I spoke to the NASA doctors, I learned that weightlessness was more damaging than I had previously thought. One doctor explained to me that after several decades of subjecting American and Russian astronauts to prolonged weightlessness, scientists now realize that the body undergoes significant changes: degradation occurs in the muscles, bones, and cardiovascular system. Our bodies evolved over millions of years while living in the earth’s gravitational field. When placed in a weaker gravitational field for long periods of time, all our biological processes are thrown into disarray.

Russian astronauts who have spent about a year in space are so weak when they come back to earth that they can barely crawl. Even if they exercise daily in space, their muscles atrophy, their bones lose calcium, and their cardiovascular systems begin to weaken. Some of the astronauts take months to recover from this damage, some of which may be permanent. A trip to Mars, which might take two years, may drain the strength of our astronauts so they cannot perform their mission when they arrive. (One solution to this problem is to spin the spacecraft, which creates artificial gravity inside the ship. This is the same reason that you can spin a pail of water over your head without the water spilling out. But this is prohibitively expensive because of the heavy machinery necessary to spin the craft. Every pound of extra weight adds $10,000 to the cost of the mission.)

WATER ON THE MOON

One game changer has been the discovery of ancient ice on the moon, probably left over from ancient comet impacts. In 2009, NASA’s lunar crater observation and sensing satellite (LCROSS) probe and its Centaur booster rocket slammed into the moon’s south polar region. They hit the moon at 5,600 miles per hour, creating a plume almost a mile high, and a crater about 60 feet across. Although TV audiences were disappointed that the LCROSS impact did not create a spectacular explosion as predicted, it yielded a wealth of scientific data. About 24 gallons of water were found in that plume. Then, in 2010, scientists made the shocking announcement that 5 percent of the debris contained water, so the moon was actually wetter than parts of the Sahara desert.

Other books

Damage Control by Gordon Kent
5 Alive After Friday by Rod Hoisington
If It Flies by LA Witt Aleksandr Voinov
Poison by Zinn, Bridget
The Waters of Kronos by Conrad Richter
The Captain's Daughter by Leah Fleming