Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by the Year 2100 (30 page)

BOOK: Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by the Year 2100
10.48Mb size Format: txt, pdf, ePub

BAN ALL DISEASES?

The prophetic movie
Things to Come
was based on a novel by H. G. Wells and predicted the future of civilization, where World War II unleashed a cycle of endless suffering and misery. Eventually, all the achievements of the human race are reduced to rubble, with gangs of warlords ruling over crushed, impoverished people. But at the end of the movie, a group of farsighted scientists, armed with powerful superweapons, begin to restore order. Civilization finally rises again from the ashes. In one scene, a child is taught the brutal history of the twentieth century and learns about something called colds. What is a cold, she asks? She is told that colds were something that were cured a long time ago.

Maybe not.

Curing all diseases has been one of our most ancient goals. But even by 2100, scientists will not be able to cure all diseases, since diseases mutate faster than we can cure them, and there are too many of them. We sometimes forget that we live in an ocean of bacteria and viruses, which existed billions of years before humans walked the surface of the earth, and will exist billions of years after
Homo sapiens
is gone.

Many diseases originally came from animals. This is one of the prices we paid for the domestication of animals, which began roughly 10,000 years ago. So there is a vast reservoir of diseases lurking in animals that will probably outlast the human race. Normally, these diseases infect only a handful of individuals. But with the rise of large cities, these communicable diseases could spread rapidly among the human population, reaching critical mass and creating pandemics.

For example, when scientists analyzed the genetic sequence of the flu virus, they were surprised to find its origin: birds. Many birds can carry variations of the flu virus without any effects. But then pigs sometimes act as genetic mixing bowls, after eating bird droppings. And then farmers often live near both. Some speculate that this is the reason the flu virus often comes from Asia, because farmers there engage in polyfarming, i.e., living in close proximiy to both ducks and pigs.

The recent H1N1 flu epidemic is only the most recent wave of bird flu and pig flu mutations.

One problem is that humans are continually expanding into new environments, cutting down forests, building suburbs and factories, and in the process encountering ancient diseases lurking among the animals. Because the human population is continuing to expand, this means that we expect to find more surprises coming out of the forest.

For example, there is considerable genetic evidence that HIV began as simian immunodeficiency virus (SIV), which originally infected monkeys but then jumped to humans. Similarly, the hantavirus affected people in the Southwest as they encroached on the territory of prairie rodents. Lyme disease, which is spread largely by ticks, has invaded the suburbs of the Northeast because people now build houses close to the forests where the ticks live. The Ebola virus probably affected tribes of humans back in antiquity, but it was only with the coming of jet travel that it spread to a larger population and made the headlines. Even Legionnaires’ disease is probably an ancient one that spawned in stagnant water, but it was the proliferation of air-conditioning units that spread this disease to the elderly on cruise ships.

This means that there will be plenty of surprises to come, with new waves of exotic diseases dominating the headlines of the future.

Unfortunately, cures for these diseases may be late in coming.

For example, even the common cold currently has no cure. The plethora of products found in any drugstore for it treats only the symptoms, rather than killing the virus itself. The problem is that there are probably more than 300 variations of the rhinovirus that causes the common cold, and it is simply too expensive to create a vaccine for all 300.

The situation for HIV is much worse, since there may be thousands of different strains. In fact, HIV mutates so rapidly that, even if you can develop a vaccine for one variety, the virus will soon mutate. Devising a vaccine for HIV is like trying to hit a moving target.

So while we will cure many diseases in the future, probably we will always have some disease that can evade our most advanced science.

BRAVE NEW WORLD

By 2100, when we will have control over our genetic destiny, we have to compare our fate with the dystopia laid out by Aldous Huxley in his prophetic novel
Brave New World,
which is set in the year 2540. The book caused universal shock and dismay when it was first published in 1932.

Yet more than seventy-five years later, many of his predictions have already come to pass. He scandalized British society when he wrote about test tube babies, when recreation and procreation would be separated, and when drugs became commonplace, yet today we live in a world where in vitro fertilization and birth control pills are taken for granted. (The only major prediction he made that has not come to pass is human cloning.) He envisioned a hierarchical world where doctors deliberately clone brain-damaged human embryos, which grow up to become servants of the ruling elite. Depending on the level of mental damage, they could be ranked into the Alphas, who are perfect and destined to rule, down to the Epsilons, who are little more than mentally retarded slaves. So technology, instead of liberating humanity from poverty, ignorance, and disease, has become a nightmare, enforcing an artificial and corrupt stability at the expense of enslaving an entire population.

Although the novel was accurate in many ways, Huxley did not anticipate genetic engineering. If he had known about this technology, then he might have worried about another problem: Will the human species split into fragments, with fickle parents and devious governments meddling with the genes of our children? Parents already dress their kids in outlandish outfits and make them compete in silly contests, so why not change the genes to fit the parents’ whims? Indeed, parents are probably hardwired by evolution to give every benefit to their progeny, so why not tamper with their genes as well?

As an elementary example of what might go wrong, consider the lowly sonogram. Although doctors innocently introduced the sonogram to help with pregnancies, this has led to a massive epidemic of abortions of female fetuses, especially in the countrysides of China and India. One study in Bombay found that 7,997 out of 8,000 aborted fetuses were female. In South Korea 65 percent of all third-born children are male. The generation of children whose parents chose this gender-based abortion will soon be of marriageable age, and millions will find that there are no females to be found. This in turn could cause enormous social dislocation. Peasants who wanted only boys to carry on their name will find that they have no grandchildren.

And in the United States, there is rampant misuse of human growth hormone (HGH), which is often touted as a cure for aging. Originally, HGH was intended to correct hormone deficiencies in children who were too short. Instead, HGH has grown into a huge underground industry based on questionable data concerning aging. In effect, the Internet has created a huge population of human guinea pigs for specious therapies.

So, given the chance, people will often misuse technology and create an enormous amount of mischief. What happens if they get hold of genetic engineering?

In a worst-case scenario, we might have the nightmare imagined by H. G. Wells in his classic science fiction novella
The Time Machine,
when the human race, in the year 802,701 AD, splits into two distinct races. He wrote, “Gradually, the truth dawned on me: that Man had not remained one species, but had differentiated into two distinct animals: that my graceful children of the Upper World were not the sole descendants of our generation, but that this bleached, obscene, nocturnal Thing, which had flashed before me, was also heir to all the ages.”

To see what variations of the human race are possible, simply look at the household dog. Although there are thousands of breeds of dogs, all originally descended from C
anis lupus,
the gray wolf, which was domesticated roughly 10,000 years ago at the end of the last Ice Age. Because of selective breeding by their human masters, dogs today come in a bewildering variety of sizes and shapes. Body shape, temperament, color, and abilities have all been radically altered by selective breeding.

Since dogs age roughly seven times faster than humans, we can estimate that about 1,000 generations of dogs have existed since they separated from wolves. If we apply this to humans, then systematic breeding of humans might split the human race into thousands of breeds in only 70,000 years, although they would be of the same species. With genetic engineering, this process could conceivably be vastly accelerated, to a single generation.

Fortunately, there are reasons to believe the speciation of the human race will not happen, at least not in the coming century. In evolution, a single species usually splits apart if it separates geographically into two separate breeding populations. This happened, for example, in Australia, where the physical separation of many animal species has led to the evolution of animals found nowhere else on earth, such as marsupials like the kangaroo. Human populations, by contrast, are highly mobile, without evolutionary bottlenecks, and are highly intermingled.

As Gregory Stock of UCLA has said, “Traditional Darwinian evolution now produces almost no change in humans and has little prospect of doing so in the foreseeable future. The human population is too large and entangled, and selective pressures are too localized and transitory.”

There are also constraints coming from the Cave Man Principle.

As we mentioned earlier, people often reject the advances of technology (for example, the paperless office) when it contradicts human nature, which has remained relatively constant over the past 100,000 years. People may not want to create designer children who deviate from the norm and are considered freaks by their peers. This decreases their chances of success in society. Dressing one’s children in silly clothing is one thing, but permanently changing their heredity is an entirely different thing. (In a free market, there probably will be a place for weird genes, but it will be small, since the market will be driven by consumer demand.) More than likely, by the end of the century, a couple will be given a library of genes to choose from, mostly those for eliminating genetic diseases but also some for genetic enhancement. However, there will be little market pressure to finance the study of bizarre genes because the demand for them will be so small.

The real danger will come not so much from consumer demand but from dictatorial governments that may want to use genetic engineering for their own purposes, such as breeding stronger but more obedient soldiers.

Another problem arises in the distant future, when we have space colonies on other planets whose gravity and climactic conditions are much different from the earth. At that point, perhaps in the next century, it becomes realistic to think of engineering a new breed of humans who can adjust to different gravity fields and atmospheric conditions. For example, a new breed of humans may be able to consume different amounts of oxygen, adjust to a different length of day, and have a different body weight and metabolism. But space travel will be expensive for a long time. By the end of the century, we may have a small outpost on Mars, but an overwhelming fraction of the human race will still be on the earth. For decades to centuries to come, space travel will be for astronauts, the wealthy, and maybe a handful of hardy space colonists.

So the splitting of the human race into different spacefaring species around the solar system and beyond will not happen in this century, or perhaps even the next. For the foreseeable future, unless there are dramatic breakthroughs in space technology, we are largely stuck on the earth.

Lastly, there is yet another threat that faces us before we reach 2100: that this technology may be deliberately turned against us, in the form of designer germ warfare.

GERM WARFARE

Germ warfare is as old as the Bible. Ancient warriors used to hurl diseased bodies over the walls of enemy cities or poison their wells with the bodies of diseased animals. Deliberately giving smallpox-infected clothing to an adversary is another way to destroy them. But with modern technology, germs can be genetically bred to wipe out millions of people.

In 1972, the United States and the former Soviet Union signed an historic treaty banning the use of germ warfare for offensive purposes. However, the technology of bioengineering is so advanced today that the treaty is meaningless.

First, there is no such thing as offensive and defensive technology when it comes to DNA research. The manipulation of genes can be used for either purpose.

Second, with genetic engineering, it is possible to create weaponized germs, those that have been deliberately modified to increase their lethality or their ability to spread into the environment. It was once believed that only the United States and Russia possessed the last vials containing smallpox, the greatest killer in the history of the human race. In 1992, a Soviet defector claimed that the Russians had weaponized smallpox and actually produced up to twenty tons of it. With the breakup of the Soviet Union, there is the nagging fear that one day a terrorist group may pay to gain access to weaponized smallpox.

In 2005, biologists successfully resurrected the Spanish flu virus of 1918, which killed more people than World War I. Remarkably, they were able to resurrect the virus by analyzing a woman who had died and was buried in the permafrost of Alaska, as well as samples taken from U.S. soldiers during the epidemic.

The scientists then proceeded to publish the entire genome of the virus on the Web, making it known to the entire world. Many scientists felt uneasy about this, since one day even a college student with access to a university laboratory might be able to resurrect one of the greatest killers in the history of the human race.

In the short term, the publication of the genome of the Spanish flu virus was a bonanza for scientists, who then could examine the genes to solve a long-standing puzzle: How did a tiny mutation cause such widespread damage to the human population? The answer was soon found. The Spanish flu virus, unlike other varieties, causes the body’s immune system to overreact, releasing large amounts of fluid that eventually kills the patient. The person literally drowns in his own fluids. Once this was understood, the genes that cause this deadly effect could be compared to the genes of the H1N1 flu and other viruses. Fortunately, none of them possessed this lethal gene. Moreover, one could actually calculate how close a virus was to attaining this alarming capability, and the H1N1 flu was still far from achieving this ability.

Other books

The Shadow Prince by Bree Despain
A Deep Deceit by Hilary Bonner
Looks Like Daylight by Deborah Ellis
Fungus of the Heart by Jeremy C. Shipp
Suture Self by Mary Daheim
Rooms by Lauren Oliver
Fused (Lost in Oblivion #4.5) by Cari Quinn, Taryn Elliott