Read From the Ocean from teh Stars Online
Authors: Arthur C Clarke
Neither seemed to interest him very much; even when you are not so busy
that you hardly have time to sleep, a quarter of a million miles puts
most of your personal affairs in a different perspective. I think that on
the moon Dr. Paynter was really happy for the first time in his life; if so,
he was not the only one.
Not far from our base there was a rather fine crater pit, a great
blowhole in the lunar surface almost two miles from rim to rim. Though it was fairly close at hand, it was outside the normal area of our joint
operations, and we had been on the moon for six weeks before Paynter led a party of three men off in one of the baby tractors to have a look at
it. They disappeared from radio range over the edge of the moon, but we weren't worried about that because if they ran into trouble they could al
ways call Earth and get any message relayed back to us.
Paynter and his men were gone forty-eight hours, which is about the
maximum for continuous working on the moon, even with booster drugs.
At first their little expedition was quite uneventful and therefore quite unexciting; everything went according to plan. They reached the crater, inflated their pressurized igloo and unpacked their stores, took their instrument readings, and then set up a portable drill to get core samples. It
was while he was waiting for the drill to bring him up a nice section of the
moon that Paynter made his second great discovery. He had made his
first about ten hours before, but he didn't know it yet.
Around the lip of the crater, lying where they had been thrown up by
the great explosions that had convulsed the lunar landscape three hun
dred million years before, were immense piles of rock which must have
come from many miles down in the moon's interior. Anything he could
do with his little drill, thought Paynter, could hardly compare with
this.
Unfortunately, the mountain-sized geological specimens that lay all
around him were not neatly arranged in their correct order; they had
been scattered over the landscape, much farther than the eye could see,
according to the arbitrary violence of the eruptions that had blasted them
into space.
Paynter climbed over these immense slag heaps, taking a swing at
likely samples with his little hammer. Presently his colleagues heard him
yell, and saw him come running back to them carrying what appeared
to be a lump of rather poor quality glass. It was some time before he was
sufficiently coherent to explain what all the fuss was about—and some
time later still before the expedition remembered its real job and got back to work.
Vandenburg watched the returning party as it headed back to the ship. The four men didn't seem as tired as one would have expected,
considering the fact that they had been on their feet for two days. Indeed,
there was a certain jauntiness about their movements which even the
space suits couldn't wholly conceal. You could see that the expedition
had been a success. In that case, Paynter would have two causes for congratulation. The priority message that had just come from Earth was
very cryptic, but it was clear that Paynter's work there—whatever it was—had finally reached a triumphant conclusion.
Commander Vandenburg almost forgot the message when he saw
what Paynter was holding in his hand. He knew what a raw diamond
looked like, and this was the second largest that anyone had ever seen. Only the Cullinan, tipping the scales at 3026 carats, beat it by a slender
margin. "We ought to have expected it," he heard Paynter babble hap
pily. "Diamonds are always found associated with volcanic vents. But
somehow I never thought the analogy would hold here."
Vandenburg suddenly remembered the signal, and handed it over to Paynter. He read it quickly, and his jaw dropped. Never in his life, Van
denburg told me, had he seen a man so instantly deflated by a message of
congratulation. The signal read:
we've done it. test
541
with modi
fied
PRESSURE CONTAINER COMPLETE SUCCESS. NO PRACTICAL LIMIT TO
SIZE. COSTS NEGLIGIBLE.
"What's the matter?" said Vandenburg, when he saw the stricken
look on Paynter's face. "It doesn't seem bad news to me, whatever it
means."
Paynter gulped two or three times like a stranded fish, then stared
helplessly at the great crystal that almost filled the palm of his hand. He tossed it into the air, and it floated back in that slow-motion way every
thing has under lunar gravity.
Finally he found his voice.
"My lab's been working for years," he said, "trying to synthesize diamonds. Yesterday this thing was worth a million dollars. Today it's
worth a couple of hundred. I'm not sure I'll bother to carry it back to
Earth."
Well, he
did
carry it back; it seemed a pity not to. For about three
months, Mrs. P. had the finest diamond necklace in the world, worth
every bit of a thousand dollars—mostly the cost of cutting and polishing.
Then the Paynter Process went into commercial production, and a month
later she got her divorce. The grounds were extreme mental cruelty; and
I suppose you could say it was justified.
WATCH THIS SPACE
I
t was quite a surprise to discover, when I looked it up, that the most famous experiment we carried out while we were on the moon had its beginnings way back in 1955. At that time, high-altitude rocket research had been going for only about ten years, mostly at White Sands, New Mexico. Nineteen fifty-five was the date of one of the most spectacular of those early experiments, one that involved the ejection of sodium onto the upper atmosphere.
On Earth, even on the clearest night, the sky between the stars isn't completely dark. There's a very faint background glow, and part of it is caused by the fluorescence of sodium atoms a hundred miles up. Since it would take the sodium in a good many cubic miles of the upper atmosphere to fill a single matchbox, it seemed to the early investigators that they could make quite a fireworks display if they used a rocket to dump a few pounds of the stuff into the ionosphere.
They were right. The sodium squirted out of a rocket above White Sands early in 1955 produced a great yellow glow in the sky which was visible, like a kind of artificial moonlight, for over an hour, before the atoms dispersed. This experiment wasn't done for fun (though it
was
fun) but for a serious scientific purpose. Instruments trained on this glow were able to gather new knowledge about the upper air—knowledge that went into the stockpile of information without which space flight would never have been possible.
When they got to the moon, the Americans decided that it would be a good idea to repeat the experiment there, on a much larger scale. A few hundred kilograms of sodium fired up from the surface would produce a display that would be visible from Earth, with a good pair of field glasses, as it fluoresced its way up through the lunar atmosphere.
(Some people, by the way, still don't realize that the moon
has
an atmosphere. It's about a million times too thin to be breathable, but if you have the right instruments you can detect it. As a meteor shield, it's first-rate, for though it may be tenuous it's hundreds of miles deep.)
Everyone had been talking about the experiment for days. The sodium bomb had arrived from Earth in the last supply rocket, and a very impressive piece of equipment it looked. Its operation was extremely simple; when ignited, an incendiary charge vaporized the sodium until a high pressure was built up, then a diaphragm burst and the stuff was
squirted up into the sky through a specially shaped nozzle. It would be
shot off soon after nightfall, and when the cloud of sodium rose out of the moon's shadow into direct sunlight it would start to glow with tremendous
brilliance.
Nightfall, on the moon, is one of the most awe-inspiring sights in the whole of nature, made doubly so because as you watched the sun's flaming disk creep so slowly below the mountains you know that it will be
fourteen days before you see it again. But it does not bring darkness—at
least, not on this side of the moon. There is always the Earth, hanging motionless in the sky, the one heavenly body that neither rises nor sets. The light pouring back from her clouds and seas floods the lunar land
scape with a soft, blue-green radiance, so that it is often easier to find
your way around at night than under the fierce glare of the sun.
Even those who were not supposed to be on duty had come out to
watch the experiment. The sodium bomb had been placed at the middle
of the big triangle formed by the three ships, and stood upright with its nozzle pointing at the stars. Dr. Anderson, the astronomer of the American team, was testing the firing circuits, but everyone else was at a respectful distance. The bomb looked perfectly capable of living up to its
name, though it was really about as dangerous as a soda-water siphon.
All the optical equipment of the three expeditions seemed to have
been gathered together to record the performance. Telescopes, spectro
scopes, motion-picture cameras, and everything else one could think of were lined up ready for action. And this, I knew, was nothing compared
with the battery that must be zeroed on us from Earth. Every amateur
astronomer who could see the moon tonight would be standing by in
his back garden, listening to the radio commentary that told him of the
progress of the experiment. I glanced up at the gleaming planet that
dominated the sky above me; the land areas seemed to be fairly free
from cloud, so the folks at home should have a good view. That seemed
only fair; after all, they were footing the bill.
There were still fifteen minutes to go. Not for the first time, I wished
there was a reliable way of smoking a cigarette inside a space suit without
getting the helmet so badly fogged that you couldn't see. Our scientists
had solved so many much more difficult problems; it seemed a pity that
they couldn't do something about
that
one.
To pass the time—for this was an experiment where I had nothing
to do—I switched on my suit radio and listened to Dave Bolton, who was
making a very good job of the commentary. Dave was our chief naviga
tor, and a brilliant mathematician. He also had a glib tongue and a
picturesque turn of speech, and sometimes his recordings had to be cen-
sored by the B.B.C. There was nothing they could do about this one,
however, for it was going out live from the relay stations on Earth.
Dave had finished a brief and lucid explanation of the purpose of the
experiment, describing how the cloud of glowing sodium would enable us
to analyze the lunar atmosphere as it rose through it at approximately a thousand miles an hour. "However," he went on to tell the waiting mil
lions on Earth, "let's make one point clear. Even when the bomb has
gone off, you won't see a darn thing for ten minutes—and neither will we. The sodium cloud will be completely invisible while it's rising up through
the darkness of the moon's shadow. Then, quite suddenly, it will flash
into brilliance as it enters the sun's rays, which are streaming past over
our heads right now as we stare up into space. No one is quite sure
how bright it will be, but it's a pretty safe guess that you'll be able to see
it in any telescope bigger than a two-inch. So it should just be within the
range of a good pair of binoculars."
He had to keep this sort of thing up for another ten minutes, and it
was a marvel to me how he managed to do it. Then the great moment
came, and Anderson closed the firing circuit. The bomb started to cook,
building up pressure inside as the sodium volatilized. After thirty seconds,
there was a sudden puff of smoke from the long, slender nozzle pointing
up at the sky. And then we had to wait for another ten minutes while the
invisible cloud rose to the stars. After all this build-up, I told myself, the
result had better be good.
The seconds and minutes ebbed away. Then a sudden yellow glow began to spread across the sky, like a vast and unwavering aurora that
became brighter even as we watched. It was as if an artist was sprawling strokes across the stars with a flame-filled brush. And as I stared at those strokes, I suddenly realized that someone had brought off the greatest
advertising coup in history. For the strokes formed letters, and the letters formed two words—the name of a certain soft drink too well known to
need any further publicity from me.
How had it been done? The first answer was obvious. Someone had
placed a suitably cut stencil in the nozzle of the sodium bomb, so that the
stream of escaping vapor had shaped itself to the words. Since there was
nothing to distort it, the pattern had kept its shape during its invisible ascent to the stars. I had seen skywriting on Earth, but this was some
thing on a far larger scale. Whatever I thought of them, I couldn't help admiring the ingenuity of the men who had perpetrated the scheme. The
Os and As had given them a bit of trouble, but the Cs and Ls were perfect.
After the initial shock, I am glad to say that the scientific program
proceeded as planned. I wish I could remember how Dave Bolton rose to