Read Everything Is Going to Kill Everybody Online
Authors: Robert Brockway
Tags: #Technology & Engineering, #Sociology, #Humor, #Social Science, #Nature, #Science, #Disasters & Disaster Relief, #General, #Environmental, #Natural Disasters, #Ecology, #System failures (Engineering), #Hazardous substances, #Engineering (General), #Death & Dying
Transcript from Development Meeting of Nanotube Shape Deciders
“Listen, guys, I love this tiny shit we’re doing here, but I’ve got an idea and I’m just gonna throw it out there: Let’s make ’em long, straight, thin filaments—like asbestos!”
“But sir, is it really the best idea to model our product after a deadly carcinogen?”
“You know what else is a deadly carcinogen? Your butt! Ho! Served!”
“Well played, sir. Cancer tubes it is.”
Concerns are also being raised about interaction between nanoscale products and external factors. Even if the nanotech itself is totally safe, if it meets up with the wrong stuff inside your body, all hell breaks loose. It’s like this: Say you have a lovely, pure, angelic daughter. She’s very talented, well-spoken, and a pleasure to be around. She’s the light of your life. But one day she brings home her new boyfriend to meet the folks … and he’s a rabid grizzly bear. Now, your daughter is still an angel in her natural environment (your home) and a grizzly bear is a noble, majestic creature in its home (the wild), but when you bring the two together, it tends to fuck up the family reunion. Now replace the family reunion in that metaphor with your own sweet internal organs, and you’ve got a delicious terror sauce that pairs well with both anxiety
and
horror!
Take gallium arsenide, for example: It’s just a harmless semiconductor, kind of like a faster version of silicon. It’s already all over many small-scale electronics and solar panels, but if you deploy it at the nano scale, suddenly it starts seeping into your body. And that’s when shit really goes wrong, because gallium arsenide is made from gallium … and arsenic! You know, like the deadly poison? So yes, gallium arsenide is a completely safe tool on the normal scale, but if it starts actually getting inside your body, you might have some problems, and deadly, poisonous problems are among the shittiest genre of problems to have inflicted on every cell in your body. That risk is not inherent to just gallium arsenide, either; pretty much any material could, theoretically, have that ill effect when brought to the micro scale. A toaster, for example, is a lovely machine—who doesn’t love its warm, crispy ejaculations? But if you shrink that toaster down to the nano scale, well, suddenly it’s a different story when that comforting, crusty breakfast staple is being made a billion times a second
inside your own heart
.
Terror Sauce Wine Pairing Guide
Red meat + terror sauce = pinot noir
Fish + terror sauce = chardonnay
Spiders + terror sauce = tears
Clowns + terror sauce = nightmares
Spider clowns + terror sauce = nocturnal fear emissions
And it’s not like you can just opt out of it, either, because this seepage factor means it won’t affect only the voluntary users of nanotech. A core principle of effective nanotechnology, after all, is the ability to spread in anything from bodily fluids to simple skin contact, through our food supply, or even as airborne contaminants. And once they do enter your bloodstream, any number of other disastrous interactions can occur: The proteins in your blood may “wrap them up,” thus distorting their own shape in the process. And when their shape changes, so does their function. Depending on what shape they’re surrounding, those proteins may suddenly switch functions. They may, for instance, get confused and switch to clotting—causing your blood to suddenly coagulate inside your veins.
Or even more worryingly, bacteria may piggyback on nanoparticles intended for medicinal purposes. This is particularly bad because medicinal nanotech will be engineered to bypass your immune system, seeing as how your immune system would destroy the particles as it would any other foreign invader, and they wouldn’t be effective as medicines if they were destroyed. So any bacteria piggybacking on these beneficial particles could then use said particles like tiny little BattleMechs—their otherwise weak bodies being shielded by the hardy, nigh-indestructible armor that is the medicinal nanoparticle. This would transform otherwise easily destroyed bacteria into little blood-borne ninjas, free to wreak severe devastation on your immune system with no way of being detected.
For a current example of potentially dangerous nanotech particles in use, consider nanosilver: It’s used for its antimicrobial properties to both eliminate odor and reduce the chance of infection. As such, they’re being mass produced for use in socks, underwear, bandages, cookware—a billion little particles with a billion potential uses, and they don’t even need to be modified, just shrunk down. This is because some elements, when reduced to nanoscale, can suddenly have effects previously unseen in their large-scale counterparts. One gram of any nanoparticle less than ten nanometers in diameter is roughly one hundred times more reactive than a gram of the same material comprised of larger, micrometer particles. In short, the more you shrink it, the more crazy shit it does. Just like the Japanese.
Unnecessary Joke Explanation
Because the Japanese are typically a shorter people, and are, as a nation, batshit insane God love them for their awesome robots, but you cannot dispute the epicness of their crazy.
It’s also astoundingly hard to measure the exact effects of any random nanoparticles you may absorb, because the more you accumulate of any given particle, the more you change the way it affects you. In the case of regular-scale silver, the side effects on human beings are relatively harmless. At most, if you consume too much normal silver you’ll develop argyria—a condition that turns your skin blue. It is permanent, but otherwise relatively harmless. The upside of normal-scale medicinal silver? It’s an effective antimicrobial ingredient whose flexibility and relative safety have proven incredibly useful to human beings. The downside? You might have to spend the rest of your life as a Smurf. And that’s pretty OK, right? They seem happy enough folk, even if it is a bit of a sausage party.
Nanoscale silver is still beneficial, of course: It still has all the antimicrobial properties of its larger counterpart … it’s just that it might have
too
much. Professor Zhiqiang Hu, from the University of Missouri, has conducted studies that showed that even relatively small doses of nanosilver can kill the bacteria used to process sewage and waste. So the more nanosilver you flush, the more invincible you make your own poop—a disturbing thought if ever there was one. And these aren’t the only necessary bacteria that silver puts at risk: If too much gets into ordinary soil, it can eliminate nitrogen-fixing bacteria in there as well. All plants on Earth need that stuff to live, so if you kill that off, no more food for you. And as a human being,
you
probably need
that
stuff to live. Well, unless you’ve drunk too much normal-scale silver, in which case you’d be just fine; Smurfberries will be largely unaffected.
Downsides of Being a Smurf
Physically frail Whole life limited by adjective before name Always getting captured by asshat Gargamel Only one woman Sloppy 242nds
Yet another problem lies in the very nature of nanotech’s construction. See, nanobots have to be made of only the hardiest materials in order to withstand the vast atmospheric pressures that would otherwise crush their delicate machinery. Materials like diamond, carbon, and even gold are used in pretty much all nanotech. Durable materials. Strong materials. Materials that do not break down. Materials that sit inside your veins, and just build up, and up. It takes only a millimeter of arterial plaque in your veins to provoke coronary artery disease (the leading cause of fatal heart attacks), and though nanobots are much smaller than that, there’s going to be a hell of a lot of them. Basically, you could now be looking at a massively contagious worldwide heart attack. It’s a supreme twist of irony: By developing microscopic, disposable machines in order to do away with the arcane, polluting, industrial practices of yesteryear, we may literally pollute ourselves to death from the inside out with the litter of the future. On the plus side, though, that litter is mostly made of diamonds and gold—so at least your insides will be blinged out like Snoop Dogg’s car on the submolecular level. It’s like they say: “Live fast, die young, leave behind a beautiful, jewel-encrusted cardiovascular system.”
SPACE DISASTERS
Asteroids, radiation, frigid vacuums, and hostile aliens—let’s face it: space sucks, sometimes literally. Space doesn’t bring you flowers, or nurture abandoned puppies back to health. Space doesn’t provide delicious sandwiches at the company picnic or help old ladies across the street. It doesn’t do one damn nice thing for you; it basically just plots your death from the abyssal void of nothingness. Sinister threats from outer space may seem like science fiction to you, but it’s only science fiction until it’s
landing on your damn head
.
Also, if you really stop and think about it, there’s a lot more of space than there are of us
.
My God … don’t … don’t look now, but I think it’s
everywhere
.
Space has got us surrounded!
12.
ASTEROIDS AND EXTINCTION-LEVEL EVENTS
AN EXTINCTION-LEVEL
Event (ELE) is a massive die-off of the majority of life on our planet, and they often seem to be caused by a particularly devastating asteroid impact. It’s not exactly a subtle or mysterious phenomenon. In a nutshell: big rock, big explosion. There’s not much to do but die as hard as
you possibly can. When most people think of major meteor strikes, they typically think of distant prehistoric events, like the one that caused the extinction of the dinosaurs 65 million years ago when an asteroid roughly six miles in diameter struck the Earth at a place called Chicxulub, which we now call Mexico, and began the most dramatic extinction in history. (It was not the largest extinction period: That dubious honor falls to the Permian-Triassic extinction event. But while the P-Tr event killed off most of the world’s insects, the Chicxulub event managed to slay every single real live dragon at once, and that’s the kind of dramatic flair that squashing a trillion bugs just does not possess.) Because we associate ELEs with such disasters in the long-distant past, the tendency is to think that catastrophic asteroid strikes are strictly relegated to ancient history when, in reality, nothing could be further from the truth. Meteors hit the Earth like your dad hits the bottle every time you disappoint him, which is to say very often, and very, very hard.
For example, see March 22, 2008, when a one-thousand-foot diameter asteroid passed within four hundred thousand miles of Earth—missing us by only six hours. To us, numbers like four hundred thousand seem vast, but in terms of space travel that’s basically like being in Earth’s pocket, and while missing something by six hours may seem like a lot to you, in astronomical terms that’s practically already inside of you: easing just the tip of its disaster member in to see how you like it before the full-fledged catastrophic shafting begins.
But even if it hadn’t missed us, Earth’s atmosphere typically protects us from a good deal of the debris that space is constantly trying to murder everybody with, and when a meteor enters the atmosphere it usually results in little more than a pleasant shooting star. Wishes are made, boys become real, and everybody learns a little lesson about love, right? Well, those dramatic shooting stars typically come from objects no bigger than a grain of sand, and if a grain of sand can light up the night sky—while simultaneously giving life to the hopes and dreams of optimistic children throughout the world—you can probably imagine what might happen when something a thousand feet across comes barreling through the atmosphere. (Hint: It ain’t granting wishes. Unless you’re wishing for a painful and fiery death.)
The Best Wish to Make upon a Falling Star
“I wish that was not a meteor about to kill everybody I love.”
If that asteroid does enter Earth’s atmosphere, a variety of things can go down, depending on its specific construction. The heavier bodies, like iron-laden rocks, are the ones most likely to actually impact the planet. That impact would throw up insane amounts of debris, release levels of destruction akin to several nuclear bombs, and leave a permanent terrain-changing impact crater for thousands of years. The more loosely constructed dust and ice asteroids, however, can’t always take the increased pressure from Earth’s atmosphere, and usually explode
before
impacting. That kind of sounds like the preferred scenario between the two: If it doesn’t hit, that’s like we’re getting off light, right? Not really. An object detonating in the air can actually do quite a bit more damage than a physical impact. The asteroid that missed us by a blink of an eye, for example, was a loosely constructed object; if it had entered our atmosphere, it would have detonated with a strength estimated at seven to eight hundred megatons. That’s about fifteen times the strength of the largest nuclear blast ever recorded! With that in mind, it’s probably safe to say that if a medium- to large-sized asteroid ever does make it through the atmosphere, we’re all pretty well fucked, because our best-case scenario in that situation is for the meteor to hit us so hard that it changes the very Earth itself. It gets a little hard to be optimistic when that kind of destruction is the most you can hope for. But if you think you
can
still see a bright side in all of this, be careful; it could just be a blinding flash from the largest explosion in history.