Electromagnetic Pulse (30 page)

Read Electromagnetic Pulse Online

Authors: Bobby Akart

BOOK: Electromagnetic Pulse
7.28Mb size Format: txt, pdf, ePub

RESTORATION

The key to minimizing adverse effects from loss of electrical power is the speed of restoration. Restoration involves matching generation capacity to a load of equivalent size over a transmission network that is initially isolated from the broader system. The larger system is then functionally rebuilt by bringing that mini system, or “island,” to the standard operating frequency and thereupon by adding more blocks of generation and load to this core in amounts that can be absorbed by the growing subsystem. This is a demanding and time-consuming process in the best of circumstances. In the singular circumstance of an EMP attack with multiple damaged components, related infrastructure failures, and particularly severe challenges in communications and transportation, the time required to restore electrical power is expected to be considerably longer than we have experienced in recent history.

However, by protecting key system components needed for restoration, by structuring the network to fail gracefully, and by creating a comprehensive prioritized recovery plan for the most critical power needs, the risk of an EMP attack having a catastrophic effect on the Nation can be greatly reduced. DHS must ensure that the mitigation plan is jointly developed by the federal government and the electric power industry, implemented fully, instilled into systems operations, and tested and practiced regularly to maintain a capability to respond effectively in emergencies. The North American Reliability Council and the Electric Power Research Institute are aptly positioned to provide much of what’s needed to support DHS in carrying out its responsibilities. The US Energy Association is well-suited to coordinating activities between and among the various energy sectors that together affect the electric power system and its vitality.

ESSENTIAL COMPONENT PROTECTION

1. Assure protection of high-value long-lead-time transmission assets.

2. Assure protection of high-value generation assets. System-level protection assurance is more complex due to the need for multiple systems to function in proper sequence.

3. Assure Key Generation Capability. Not all plants can or should be protected. However, regional evaluation of key generating resources necessary for recovery should be selected and protected.

a. Coal-fired generation plants make up nearly half the Nation’s generation and are generally the most robust overall to EMP, with many electromechanical controls still in operation. Such coal plants also normally have at least a few days to a month of on-site fuel storage.

b. Natural gas-fired combustion turbines and associated steam secondary systems represent the newest and a significant contributor to meeting loads. These have modern electronics-based control and thus are more vulnerable. Natural gas is not stored on-site and likely will be interrupted in an EMP attack. However, provision can be made to have gas-fired plants also operate on fuel oil; many do already.

c. Nuclear plants produce roughly 20% of the Nation’s generation and have many redundant fail-safe systems that tend to remove them from service whenever any system upset is sensed. Their safe shut down should be assured, but they will be unavailable until near the end of restoration.

d. Hydroelectric power is generally quite robust to EMP, and constitutes a substantial fraction of total national generation capacity, albeit unevenly distributed geographically.

e. In general, the various distributed and renewable fueled generators are not significant enough at this time to warrant special protection.

f. Black start generation of all types is critical and will need to be protected from EMP upset or damage.

4. Assure functional integrity of critical communications channels. The most critical communications channels in the power grid are the ones that enable recovery from collapse, such as ones that enable manual operation and coordination-supporting contacts between distant system operators and those that support system diagnostics. Generation, switching, and load dispatch communications support is next in importance.

5. Assure availability of emergency power at critical facilities needed for restoration. Transmission substations need uninterruptible power to support rapid restoration of grid connectivity and operability, and thereby to more quickly restore service. Most have short-life battery backup systems, but relatively few have longer-duration emergency generators; much more emphasis on the latter is needed.

6. Assure protection of fuel production and its delivery for generation. Fuel supply adequate to maintain critical electrical service and to restore expanded service is critical.

7. Expand and assure intelligent islanding capability. The ability of the larger electrical power system to break into relatively small subsystem islands is important to mitigate overall EMP impacts and provide faster restoration.

8. Develop and deploy system test standards and equipment. Device-level robustness standards and test equipment exist, but protection at the system level is the overarching goal. System-level robustness improvements such as isolators, line protection, and grounding improvements will be the most practical and least expensive in most cases relative to replacement with more robust individual component devices. Periodic testing of system response is necessary.

SYSTEM RESTORATION

1. Develop and enable a restoration plan. This plan must prioritize the rapid restoration of power to government-identified critical service. Sufficient black start generation capacity must be provided where it is needed in the associated subsystem islands, along with transmission system paths that can be isolated and connected to matching loads. The plan must address outages with wide geographic coverage, multiple major component failures, poor communication capabilities, and widespread failure of islanding schemes within the EMP-affected area. Government and industry responsibilities must be unequivocally and completely assigned. All necessary legal and financial arrangements, e.g., for indemnification, must be put into place to allow industry to implement specified government priorities with respect to service restoration, as well as to deal with potential environmental and technical hazards in order to assure rapid recovery.

2. Simulate, train, exercise, and test the plan. Simulators must be developed for use in training and developing procedures similar to those in the airline industry; a handful should suffice for the entire country. Along with simulation and field exercises, Red Team discipline should be employed to surface weaknesses and prioritize their rectification.

3. Assure sufficient numbers of adequately trained recovery personnel.

4. Assure availability of replacement equipment. R&D is under way—and should be vigorously pursued—into the production of emergency “universal” replacements. The emergency nature of such devices would trade efficiency and service-life for modularity, transportability, and affordability.

5. Implement redundant backup diagnostics and communication. Assure that system operators can reliably identify and locate damaged components.

TELECOMMUNICATIONS

IMPORTANCE OF ASSURED TELECOMMUNICATIONS

Telecommunications plays a key role in US society in terms of its direct effect on individuals and business and due to its impact on other key infrastructures. The relationship of telecommunications to the other critical infrastructures, such as the financial industry, is often recognized during and following widespread outages, such as those experienced as a result of the September 11, 2001, attacks on the World Trade Centers and the immediate vicinity of “Ground Zero.” The local disruption of all critical infrastructures, including power, transportation, and telecommunications, interrupted operations in key financial markets and posed increased liquidity risks to the US financial system. In the days following the attacks, institutions in the affected areas were implementing their business continuity plans, which proved vital to the rapid restoration and recovery of services in the New York City area. In addition, the President emphasized that the prompt restoration of Wall Street’s capabilities was critical to the economic welfare of the Nation; in doing so, he aptly linked economic stability to national security.

For some of the most critical infrastructure services, such as electric power, natural gas, and financial services, assured communications are essential to their recovery following a major adverse event. The importance of telecommunications in an emergency situation is underscored by the existence of the National Communications System (NCS), established by Executive Order 12472,
Assignment of National Security and Emergency Preparedness Telecommunications Functions.

The NCS shall seek to ensure that a national telecommunications infrastructure is developed which: (1) Is responsive to the national security and emergency preparedness needs of the President and the Federal departments, agencies and other entities, including telecommunications in support of national security leadership and continuity of government; (2) Is capable of satisfying priority telecommunications requirements under all circumstances through use of commercial, government and privately owned telecommunications resources; (3) Incorporates the necessary combination of hardness, redundancy, mobility, connectivity, interoperability, restorability and security to obtain, to the maximum extent Coordinating Center (NCC) for Telecommunications to facilitate the initiation, coordination, restoration, and reconstitution of National Security and Emergency Preparedness (NS/EP) telecommunications services or facilities under all crises and emergencies; developing and ensuring the implementation of plans and programs that support the viability of telecommunications infrastructure hardness, redundancy, mobility, connectivity, and security; and serving as the focal point for joint industry-government and interagency NS/EP telecommunications planning and partnerships. In addition, the President’s National Security Telecommunications Advisory Committee (NSTAC), a Federal Advisory Committee Act (FACA) CEO-level advisory group to the President, is tasked with providing industry-sourced advice and expertise related to implementing policies affecting NS/EP communications. These NS/EP services are those “critical to the maintenance of a state of readiness or the response to and management of any event or crisis that causes harm or could cause harm to the population, damage to or the loss of property, or degrades or threatens the NS/EP posture of the United States.”

The NSTAC in its 1985 Report on EMP found that “consistent with its cost constraints, industry should incorporate low-cost EMP mitigation practices into new facilities and, as appropriate, into upgrade programs. For those areas where a carrier/supplier recognizes that a significant improvement in EMP resistance and surveillance could be achieved, but at a cost beyond the carrier/supplier's own cost constraints, the carrier/supplier should identify such options to the government for evaluation and possible funding.” On October 9, 1985, the NSTAC approved the EMP Final Task Force Report and forwarded a recommendation to the President, calling for a joint industry and Government program to reduce the costs of existing techniques for mitigating high-altitude electromagnetic pulse (HEMP)-induced transients and to develop new techniques for limiting transient effects. As a result, the NCS and industry, working with the ATIS—the Alliance for Industry Solutions—developed a set of ANSI standards and Generic Requirements
4
to address EMP.

NS/EP Definitions

NS/EP Telecommunications Services
: Telecommunications services that are used to maintain a state of readiness or to respond to and manage any event or crisis (local, national, or international) that causes or could cause injury or harm to the population, damage to or loss of property, or degrades or loss of property, or degrades or threatens the NS/EP posture of the United States. (
“Telecommunications Service Priority [TSP] System for National Security Emergency Preparedness: Service User Manual,

NCS Manual 3-1-1, July 9, 1990. Appendix A.)

NS/EP Requirements:
Features that maintain a state of readiness or respond to and manage an event or crisis (local, national, or international), which causes or could cause injury or harm to the population, damage to or loss of property, or degrade or threaten the NS/EP posture of the United States. (
Federal Standard 1037C)

With respect to NS/EP telecommunications, capabilities exist for prioritizing phone calls through the wireline, wireless, and satellite networks during the time interval when call volumes are excessive and facilities are damaged, giving priority to restoring services that may be damaged or degraded, and getting new circuits into operation.

According to recent testimony by a DHS official, “The NCS is continuing a diverse set of mature and evolving programs designed to ensure priority use of telecommunications services by NS/EP users during times of national crisis. The more mature services—including the Government Emergency Telecommunications Service (GETS) and the Telecommunications Service Priority (TSP)—were instrumental in the response to the September 11 attacks. FY 2005 funding enhances these programs and supports the development of the Wireless Priority Service (WPS) program and upgrade to the Special Routing Arrangement Service (SRAS). Specifically, priority service programs include: (1) GETS, which offers nationwide priority voice and low-speed data service during an emergency or crisis situation; (2) WPS, which provides a nationwide priority cellular service to key NS/EP users, including individuals from federal, state and local governments and the private sector; (3) TSP, which provides the administrative and operational framework for priority provisioning and restoration of critical NS/EP telecommunications services; (4) SRAS, which is a variant of GETS to support the Continuity of Government (COG) program including the reengineering of SRAS in the AT&T network and development of SRAS capabilities in the MCI and Sprint networks, and; (5) the Alerting and Coordination Network (ACN), which is an NCS program that provides dedicated communications between selected critical government and telecommunications industry operations centers.”
6

Other books

Le Jour des Fourmis by Bernard Werber
Lassoing His Cowgirl by Steele, C.M.
Ducdame by John Cowper Powys
Oddfellow's Orphanage by Emily Winfield Martin
The Duke and The Governess by Norton, Lyndsey
The Governess Club: Sara by Ellie Macdonald